On the r-Stablity Index of r-Maximal Closed Hypersurfaces in de Sitter Spaces

Main Article Content

B. Esmaeili
Gh. Haghighatdoost
Firooz Pashaie
https://orcid.org/0000-0002-3020-7649

Abstract

It is well-known that some of minimal (or maximal) hypersurfaces are stable. However, there is growing recognition on unstable hypersurfaces by introducing the concept of index of stability for minimal ones. For instance, the index of stability for minimal hypersurefces in Euclidean n-sphere has been defined by J. Simons  and followed by many people. Also, Barros and Sousa have studied a high order extention of index as the concept of r-index (i.e. index of r-stability) on r-minimal hypersurfaces of n-sphere. They gave low bonds for r-stability index of r-minimal hypersurfaces in Euclidean sphere. In this paper, we low bounds for the r-stability index of r-maximal closed spacelike hypersurfaces in the de Sitter space.

Article Details

How to Cite
Esmaeili, B., Haghighatdoost, G., & Pashaie, F. (2022). On the r-Stablity Index of r-Maximal Closed Hypersurfaces in de Sitter Spaces: . Tamkang Journal of Mathematics, 53(2), 163–173. https://doi.org/10.5556/j.tkjm.53.2022.3639
Section
Papers

References

K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987) 1219.

J. A. Aledo, L. J. Alias, On the volume and the Gauss map image of spacelike hypersurfaces in de Sitter space, Proc. Amer. Math. Soc. 130:4 (2002), 1145-1151.

L. J. Alias, On the stability index of minimal and constant mean curvature hypersurfaces in spheres, Revista de la Union Matematica Argentina 47 (2006), 39 - 61.

L. J. Alias and J. M. Malacarne, Spacelike hypersurfaces with constant higher order mean curvature in Minkowski space-time , J. of Geom. and Physics 41(2002) 359 - 375.

J. L. M. Barbosa and M. de Carmo, stability of hypersurfaces with constant mean curvature ,Math. Z. 185 (1984), 339- 353.

J. L. M. Barbosa, M. de Carmo and J. Eschenberg, stability of hypersurfaces of constant mean curvature in Riemannian manifolds ,Math. Z. 197 (1988), 123 - 138.

J. L. M. Barbosa and A. G. Colares, stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal.Geom., 15 (1997), 277 - 297.

A. Barros, A. Brasil and A. Caminha, Stability of spacelike hypersurfaces in foliated spacetimes, Diff. Geom. and Appl. 26 (2008), 357 - 365.

A. Barros and P. Sousa, Estimate for index of closed minimal hypersurfaces of spheres, Kodai Math. J. 32, no.3 (2009), 442 - 449.

A. Barros and P. Sousa, Estimate for index of hypersurfaces in spheres with null higher order mean curvature, Monatsh Math. 160 (2010), 227 - 241.

A. Brasil and A. G. Colares, Stability of spacelike hypersurfaces with constant r-mean curvature in de Sitter space,Proceeding of the XII Fal Workshop on Geom. and Phys. Publ. R. Soc. Mat. Esp. 7, R. Soc. Mat. Esp., Madrid (2004), 139 - 145.

F. Camargo, A. Caminha, M. da Silva and H. de Lima, On the r-stability of spacelike hypersurfaces, J. of Geom. and Phys. 60 (2010), 1402 - 1410.

A. Caminha, On spacelike hypersurfaces of constant sectional curvature lorentz manifolds, J. of Geom. and phys. 56 (2006), 1144 - 1174.

G. Colombo, J. A. S. Pelegrin and M. Rigoli, Stable maximal hypersurfaces in Lorentzian spacetimes (2019) doi:10.1016/j.na.2018.09.009.

J. Marsdan and F. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep. 66 (1980) 109 { 139.

B. O'Neill, Semi-Riemannian geometry with applicatins to relativity, Acad. Press Inc. (1983).

F. Pashaie, S. M. B. Kashani, Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying Lkx =Ax + b, Bull. Iran. Math. Soc. 39, no.1 (2013), 195 - 213.

O. Perdomo, Low index minimal hypersurfaces of spheres, Asian J. Math. 5 (2001), 741 - 749.

J. Ramanathan, Complete space-like hypersurfaces of constant mean curvature in de Sitter space, Indiana Univ. Math. 36 (1987) 349 - 359.

J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62 - 105.

F. Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. AMS 108 (1990), 989 - 992.

Y. Xin, Minimal Submanifolds and Related Topics, World Scientific Publishing Co., Singapore, 2003.