Solving An Inverse Problem For The Sturm-Liouville Operator With A Singular Potential By Yurko's Method

Authors

DOI:

https://doi.org/10.5556/j.tkjm.52.2021.3700

Keywords:

inverse spectral problems; Sturm-Liouville operator; singular potential; method of spectral mappings

Abstract

An inverse spectral problem for the Sturm-Liouville operator with a singular potential from the class $W_2^{-1}$ is solved by the method of spectral mappings. We prove the uniqueness theorem, develop a constructive algorithm for solution and obtain necessary and sufficient conditions of solvability for the inverse problem in the self-adjoint and the non-self-adjoint cases.

References

G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Hunt- ington, NY: Nova Science Publishers (2001).

V. A. Marchenko, Sturm Liouville Operators and Their Applications, Naukova Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986).

B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow(1984)(Russian); English transl., VNU Sci. Press, Utrecht (1987).

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, NewYork, Academic Press (1987).

A. M. Savchuk and A. A. Shkalikov, Sturm-Liouville operators with singular potentials, Math. Notes, 66 (1999), no. 6, 741–753.

A.M.Savchuk,On the eigenvalues and eigenfunctions of the Sturm-Liouville operator with a singular potential, Math. Notes 69 (2001), no. 2, 245–252.

A. M. Savchuk and A. A. Shkalikov, Trace formula for Sturm-Liouville operators with sin- gular potentials, Math. Notes 69 (2001), no. 3, 387–400.

R. O. Hryniv and Y. V. Mykytyuk, Transformation operators for Sturm-Liouville operators with singular potentials, Math. Phys. Anal. Geom. 7 (2004), 119–149.

A. M. Savchuk and A. A. Shkalikov, On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces, Math. Notes 80 (2006), no. 6, 814–832.

R. O. Hryniv and Y. V. Mykytyuk, Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials, J. Funct. Anal., 238 (2006), no. 1, 27–57.

K. A. Mirzoev, Sturm-Liouville operators, Trans. Moscow Math. Soc. 75 (2014), 281–299.

K. A. Mirzoev and A. A. Shkalikov, Differential operators of even order with distribution coefficients, Math. Notes 99 (2016), no. 5, 779–784.

N. N. Konechnaja, K. A. Mirzoev and A. A. Shkalikov, On the asymptotic behavior of solu- tions to two-term differential equations with singular coefficients, Math. Notes 104 (2018), no. 2, 244–252.

N. N. Konechnaja and K. A. Mirzoev, The leading term of the asymptotics of solutions of linear differential equations with first-order distribution coefficients, Math. Notes 106 (2019), no. 1, 81–88.

R. O. Hryniv and Y. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems 19 (2003), no. 3, 665–684.

R. O. Hryniv and Y. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville opera- tors with singular potentials. II. Reconstruction by two spectra, North-Holland Mathematics Studies 197 (2004), 97–114.

R. O. Hryniv and Y. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse problems 20 (2004), no. 5, 1423–1444.

A. M. Savchuk and A. A. Shkalikov, Inverse problem for Sturm-Liouville operators with distribution potentials: Reconstruction from two spectra, Russ. J. Math. Phys. 12 (2005), no. 4, 507–514.

R. O. Hryniv and Y. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale, Proc. Edinb. Math. Soc. 49 (2006), no. 2, 309–329.

G. Freiling, M. Y. Ignatiev and V. A. Yurko, An inverse spectral problem for Sturm-Liouville operators with singular potentials on star-type graph, Proc. Symp. Pure Math. 77 (2008), 397–408.

A. M. Savchuk and A. A. Shkalikov, On the properties of maps connected with inverse Sturm-Liouville problems, Proc. Steklov Inst. Math. 260 (2008), 218–237.

P. Djakov and B. N. Mityagin, Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials, Integral Transforms Spec. Funct. 20 (2009), no. 3–4, 265–273.

Ya. V. Mykytyuk and N. S. Trush, Inverse spectral problems for Sturm-Liouville operators with matrix-valued potentials, Inverse Problems 26 (2009), no. 1, 015009.

A. M. Savchuk and A. A. Shkalikov, Inverse problems for Sturm-Liouville operators with potentials in Sobolev spaces: Uniform stability, Func. Anal. Appl. 44 (2010), 270–285.

R. O. Hryniv, Analyticity and uniform stability in the inverse singular Sturm-Liouville spectral problem, Inverse Problems 27 (2011), no. 6, 065011.

R. Hryniv and N. Pronska, Inverse spectral problems for energy-dependent Sturm-Liouville equations, Inverse Problems 28 (2012), no. 8, 085008.

N. Pronska, Reconstruction of energy-dependent Sturm-Liouville equations from two spectra, Integral Equations and Operator Theory 76 (2013), 403–419.

A.M.Savchuk,ReconstructionofthepotentialoftheSturm-Liouvilleoperatorfromafinite set of eigenvalues and normalizing constants, Math. Notes 99 (2016), no. 5, 715–728.

N. P. Bondarenko, A 2-edge partial inverse problem for the Sturm-Liouville operators with singular potentials on a star-shaped graph, Tamkang Journal of Mathematics 49 (2018), no. 1, 49–66.

N. P. Bondarenko, An inverse problem for Sturm-Liouville operators on trees with partial information given on the potentials, Math. Meth. Appl. Sci. 42 (2019), no. 5, 1512–1528.

N. J. Guliyev, Schrödinger operators with distributional potential sand boundary conditions dependent on the eigenvalue parameter, J. Math. Phys. 60 (2019), 063501.

S. V. Vasiliev, An inverse spectral problem for Sturm-Liouville operators with singular po- tentials on arbitrary compact graphs, Tamkang Journal of Mathematics 50 (2019), no. 3, 293–305.

S. A. Buterin, On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval, J. Math. Anal. Appl. 335 (2007), no. 1, 739–749.

Y. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill- Posed Problems Series, Utrecht, VNU Science (2002).

N. Levinson, The inverse Sturm-Liouville problem, Matematisk Tidsskrift. B 13(1949), 25– 30.

Z. L. Leibenson, The inverse problem of spectral analysis for higher-order ordinary differ- ential operators, Trudy Moskov. Mat. Obshch. 15 (1966), 70–144; English transl. in Trans. Moscow Math. Soc. 15 (1966).

Z. L. Leibenson, Spectral expansions of transformations of systems of boundary value problems, Trudy Moskov. Mat. Obshch. 25 (1971), 15–58; English transl. in Trans. Moscow Math. Soc. 25 (1971).

V. A. Yurko, Inverse spectral problems for differential systems on a finite interval, Results Math. 48 (2005), 371–386.

V. A. Yurko, Inverse spectral problems for differential operators on spatial networks, Russian Mathematical Surveys 71 (2016), no. 3, 539–584.

X. He and H. Volkmer, Riesz bases of solutions of Sturm-Liouville equations, J. Fourier Anal. Appl. 7 (2001), no. 3, 297–307.

N. P. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems 33 (2017), 115010.

C.-F. Yang and N. P. Bondarenko, Local solvability and stability of inverse problems for Sturm-Liouville operators with a discontinuity, Journal of Differential Equations 268 (2020), no. 10, 6173–1688.

Downloads

Published

2021-01-31

How to Cite

Bondarenko, N. P. (2021). Solving An Inverse Problem For The Sturm-Liouville Operator With A Singular Potential By Yurko’s Method. Tamkang Journal of Mathematics, 52(1), 125-154. https://doi.org/10.5556/j.tkjm.52.2021.3700