On the Fekete-Szego problem for alpha-quasi-convex functions
Main Article Content
Abstract
Let Qα(α≥0) denote the class of normalized analytic alpha-quasi-convex functions f, defined in the unit disc, D={z:|z|<1}, by the condition
Re[(1−α)f′(z)g′(z)+α(zf′(z))′g′(z)]>0,
Where f(z)=z+∑∞n=2anzn and where g(z)=z+∑∞n=2bnzn is a convex univalent function in D. Sharp upper bounds are obtained for |a3−μa22|, when μ≥0.
Article Details
How to Cite
Abdel-Gawad, H. R. (2000). On the Fekete-Szego problem for alpha-quasi-convex functions. Tamkang Journal of Mathematics, 31(4), 251–256. https://doi.org/10.5556/j.tkjm.31.2000.381
Issue
Section
Papers