On the Fekete-Szego problem for alpha-quasi-convex functions

Main Article Content

H. R. Abdel-Gawad

Abstract

Let Qα(α0) denote the class of normalized analytic alpha-quasi-convex functions f, defined in the unit disc, D={z:|z|<1}, by the condition

Re[(1α)f(z)g(z)+α(zf(z))g(z)]>0,

Where f(z)=z+n=2anzn and where g(z)=z+n=2bnzn is a convex univalent function in D. Sharp upper bounds are obtained for |a3μa22|, when μ0.

Article Details

How to Cite
Abdel-Gawad, H. R. (2000). On the Fekete-Szego problem for alpha-quasi-convex functions. Tamkang Journal of Mathematics, 31(4), 251–256. https://doi.org/10.5556/j.tkjm.31.2000.381
Section
Papers
Author Biography

H. R. Abdel-Gawad

Mathematics Department, Faculty of Science, Aswan-Egypt.