Strongly $\lambda$-Statistically and Strongly Vallée-Poussin Pre-Cauchy Sequences in Probabilistic Metric Spaces

Main Article Content

Argha Ghosh
Samiran Das

Abstract

We introduce the notions of strongly $\lambda$-statistically pre-Cauchy and strongly Vall´ee-Poussin pre-Cauchy sequences in probabilistic metric spaces endowed with strong topology. And we show that these two new notions are equivalent. Strongly $\lambda$-statistically convergent sequences are strongly $\lambda$-statistically pre-Cauchy sequences, and we give an example to show that there is a sequence in a probabilistic metric space which is strongly $\lambda$-statistically pre-Cauchy but not strongly $\lambda$-statistically convergent.

Article Details

How to Cite
Ghosh, A., & Das, S. (2022). Strongly $\lambda$-Statistically and Strongly Vallée-Poussin Pre-Cauchy Sequences in Probabilistic Metric Spaces. Tamkang Journal of Mathematics, 53(4), 373–384. https://doi.org/10.5556/j.tkjm.53.2022.3893
Section
Papers
Author Biography

Samiran Das, The University of Burdwan

Department of Mathematics, Senior Research Fellow. 

References

J. Connor, J. Fridy and J. Kline, Statistically pre-Cauchy Sequences, Analysis, 14 (1994), 311-317.

J. Connor, J. 1992. R-type summability methods, Cauchy criteria, P-sets and Statistical convergence,

Proc. Amer. Math. Soc., 115 (1992), 319-327.

J. Connor, The statistical and strong P-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63.

H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.

P. Malik and S. Das, On strong λ-statistical convergence of sequences in probabilistic metric (pm) spaces, arXiv preprint arXiv:2007.09173, 2020.

K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535-537.

M. Mursaleen, λ-statistical convergence, Mathematica Slovaca, 50 (2000), no. 1, 111-115.

T. S´alat, On statistically convergent sequences of real numbers, Mathematica Slovaca, 30 (1980), 139-150.

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.

C. S¸en¸cimen and S. Pehlivan, Strong statistical convergence in probabilistic metric space, Stoch. Anal. Appl., 26 (2008), 651-664.

B. Schweizer, and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314-334.

B. Schweizer, and A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math., 10 (1960), 673-675.

B. Schweizer, and A. Sklar, Probabilistic Metric Spaces, North Holland: New York, Amsterdam, Oxford, 1983.

R. M. Tardiff, Topologies for Probabilistic Metric spaces, Pacific J. Math., 65 (1976), 233-251.

E. Thorp, Generalized topologies for statistical metric spaces, Fundamenta Mathematicae, 51 (1962), 9-21.