On the existence of two stationary solutions for a free boundary problem describing cell motility
Main Article Content
Abstract
Article Details
References
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1998.
A. Mogilner and L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells, A quantitative analysis. Biophys. J., 83(2002), 1237—1258.
A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models, Biophys J., 101(2011), 545--553.
A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod, Bio. J., 97(2009), 1853--1863.
H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion, Differential and Integral Equations, 25(2012), 93--116.
H. Monobe and H. Ninomiya, Multiple existence of traveling waves of a free boundary problem describing cell motility, Discrete and Continuous Dynamical Systems Series B, 19(2014),789--799.
J. V. Small, M. Herzog and K. Anderson, Actin filament organization in the fish keratocyte lamellipodium, J. Cell Biol., 129(1995), 1275--1286.