Mathematical Analysis of Intraguild Interactions among Hosts, Parasitoids and Predators

Authors

  • Hongming You
  • Kaijen Cheng School of Mathematics and Statistics, Zhaoqing University, Zhaoqing, Guangdong 526061, PR China

DOI:

https://doi.org/10.5556/j.tkjm.52.2021.4087

Keywords:

Omnivorous system, Parasites, IGP

Abstract

In this work, we consider a mathematical model of an omnivorous ecosystem in which intermediate predators are infected by parasites. We first establish the boundeness and positivity of solution with conditions. Then the existence and local stability of all equilibria are clarified in R4. Finally, some global dynamics will be analyzed.

 

References

R. D. Holt and M. E. Hochberg. The Coexistence of Competing Parasites. Part II— Hyperparasitism and Food Chain Dynamics, Journal of Theoretical Biology, 193(3) (1998), 485–495.

L. Markus. Asymptotically autonomous differential systems, In Contributions to the theory of nonlinear oscillations vol.3, Princeton University Press, Princeton, N. J., 1956.

T. Nakazawa and N. Yamamura. Community structure and stability analysis for intraguild interactions among host, parasitoid, and predator, Population Ecology, 48(2) (2006), 139– 149.

R. D. Holt and G. A. Polis. A Theoretical Framework for Intraguild Predation, The American Naturalist, 149(4) (1997), 745–764.

G. A. Polis. Complex trophic interactions in deserts : an empirical critique of food-web theory, The American Naturalist, 138(1) (1991), 123–155.

G. A. Polis, C. A. Myers and R. D. Holt. The Ecology and Evolution of Intraguild Predation-Potential Competitors That Eat Each Other, Ann. Rev. Ecol. Syst, 20 (1989), 297–330.

J. A. Rosenheim. Higher-order predators and the regulation of insect herbivore populations, Entomology, 43 (1997), 421–447.

J. A. Rosenheim, H. K. Kaya, L. E. Ehler, J. J. Marois and B. A. Jaffee. Intraguild Predation Among Biological-Control Agents: Theory and Evidence, Biological Control, 5 (1995), 303– 335.

J. Chattopadhyay and O. Arino. A predator-prey model with disease in the prey, Nonlinear Anal, 36 (1999), 747–766.

Y. Lenbury, S. Rattanamongkonkul, N. Tumrasvin and S. Amornsamankul. Predator-prey interaction coupled by parasitic infection: Limit cycles and chaotic behavior, Mathematical and Computer Modelling, 30(9-10) (1999), 131–146.

L. Han, Z. Ma and H. W. Hethcote. Four predator prey models with infectious diseases, Mathematical and Computer Modelling, 34(7-8) (2001), 849–858.

E. Venturino. Epidemics in predator-prey models: disease in the predators, Mathematical Medicine and Biology, 19(3) (2002), 185–205.

Y. Xiao and L. Chen. Modeling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences, 171(1) (2001), 59–82.

J. Chattopadhyay, R. R. Sarkar and G. Ghosal. Removal of infected prey prevent limit cycle oscillations in an infected prey-predator system:a mathematical study, Ecological Modelling, 156(2-3) (2002), 113–121.

H. W. Hethcote, W. Wang, L. Han and Z. Ma. A predator-prey model with infected prey, Theoretical Population Biology, 66(3) (2004), 259–268.

B. K. Singh, J. Chattopadhyay and S. Sinha. The role of virus infection in a simple phyto- plankton zooplankton system, Journal of Theoretical Biology, 231(2) (2004), 153–166.

S. R. Hall, M. A. Duffy and C. E. Cáceres. Selective Predation and Productivity Jointly Drive Complex Behavior in Host-Parasite Systems, The American Naturalist, 165(1) (2005), 70–81.

Downloads

Published

2021-01-31

How to Cite

You, H., & Cheng, K. (2021). Mathematical Analysis of Intraguild Interactions among Hosts, Parasitoids and Predators. Tamkang Journal of Mathematics, 52(1), 171-187. https://doi.org/10.5556/j.tkjm.52.2021.4087