On the sum of distance Laplacian eigenvalues of graphs
Main Article Content
Abstract
Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439 (2013), 21–33.
M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Mathematical Journal, 64(139) (2014), 751–761.
D. D. Caen An upper bound on the sum of squares of degrees in a graph, Discrete Math., 185 (1998), 245–248.
R. Fernandes, M. A. A. de Freitas, C.M. da Silva Jr and R. R. Del-Vecchio, Multiplicities of distance Laplacian eigenvalues and forbidden subgraphs, Linear Algebra Appl., 541 (2018), 81–93.
H. A. Ganie, S. Pirzada and Vilmar Trevisan, On the sum of k largest Laplacian eigenvalues of a graph and clique number, Mediterranean J. Math., 18 (2021), Artcle No. 15.
H. A. Ganie, S. Pirzada, Bilal A. Rather and Rezwan Ul Shaban, On Laplacian eigenvalues of graphs and Brouwer’s conjecture, J. Ramanujan Math. Soc., 36(1) (2021), 13–21.
H. A. Ganie, S. Pirzada, Bilal A. Rather and Vilmar Trevisan, Further developments on Brouwer’s conjecture for the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl., 588 (2020), 1–18.
H. A. Ganie, S. Pirzada, Rezwan Ul Shaban and X. Li, Upper bounds for the sum of Laplacian eigenvalues of a graph and Brouwer’s conjecture, Discrete Math. Algorithms Appl., 11(2) (2019), 195008 (15 pages).
M. Nath and S. Paul, On the distance Laplacian spectra of graphs, Linear Algebra Appl., 460 (2014), 97–110.
A. Niu, D. Fan and G. Wang, On the distance Laplacian spectral radius of bipartite graphs, Discrete Appl. Math., 186 (2015), 207–213.
S. Pirzada and Saleem Khan, On distance Laplacian spectral radius and chromatic number of graphs, Linear Algebra Appl., 625 (2021), 44–54.
S. Pirzada, An Introduction to Graph Theory, 1st edition, Universities Press, Orient Blackswan, Hyderabad, 2012.
S. Pirzada and H. A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, Linear Algebra Appl., 486 (2015), 454–468.
B. Zhou, On Laplacian eigenvalues of a graph, Z. Naturforsch, 59a (2004), 181–184.