COINCIDENCE THEOREMS IN COMPLETE METRIC SPACES

Main Article Content

Y. J. CHO
N. J. HUANG
L. XIANG

Abstract




The purpose of this paper is to introduce new classes of generalized contractive type set-valued mappings and weakly dissipative mappings and to prove some coincidence theorems for these mappings by using the concept of $\omega$-distances.




Article Details

How to Cite
CHO, Y. J., HUANG, N. J., & XIANG, L. (1999). COINCIDENCE THEOREMS IN COMPLETE METRIC SPACES. Tamkang Journal of Mathematics, 30(1), 1–7. https://doi.org/10.5556/j.tkjm.30.1999.4191
Section
Papers

References

J. Caristi, Fixed Point theorems for mappings satisfying inwardness conditions, Trans Amer. Math. Soc. 215(1976), 241-251. ·

S. S. Chang, N. J_Huang and Y. J. Cho, Coincidence and fixed point theorems, Bull. Honam Math. Soc. 12(1995), 153-161.

T. Husain and E. Tarafdar, Fixed point theorems for multivalued mappings of nonexpansive type, Yokohama Math. J. 28 (1980), 1-6.

T. Husain and A. Latif, Fixed points of multivalued nonexpansive maps, Math. Japon 33(1988), 285-391.

T. Husain and A. Latif, Fixed points of multivalued maps, Internat. J. Math. and Math. Sci. 14 (1991), 421-430

0 . Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44(1996), 381-391.

S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488

T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric com­pleteness, Topological Methods in Nonlinear Analysis 8(1996), 371-382.

H. K. Xu, On weakly nonexpansive and *-nonexpansive multivalued mappings, Math. Japon.

(1991), 441-445