COINCIDENCE THEOREMS IN COMPLETE METRIC SPACES
Main Article Content
Abstract
The purpose of this paper is to introduce new classes of generalized contractive type set-valued mappings and weakly dissipative mappings and to prove some coincidence theorems for these mappings by using the concept of $\omega$-distances.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
J. Caristi, Fixed Point theorems for mappings satisfying inwardness conditions, Trans Amer. Math. Soc. 215(1976), 241-251. ·
S. S. Chang, N. J_Huang and Y. J. Cho, Coincidence and fixed point theorems, Bull. Honam Math. Soc. 12(1995), 153-161.
T. Husain and E. Tarafdar, Fixed point theorems for multivalued mappings of nonexpansive type, Yokohama Math. J. 28 (1980), 1-6.
T. Husain and A. Latif, Fixed points of multivalued nonexpansive maps, Math. Japon 33(1988), 285-391.
T. Husain and A. Latif, Fixed points of multivalued maps, Internat. J. Math. and Math. Sci. 14 (1991), 421-430
0 . Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44(1996), 381-391.
S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488
T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis 8(1996), 371-382.
H. K. Xu, On weakly nonexpansive and *-nonexpansive multivalued mappings, Math. Japon.
(1991), 441-445