GLOBAL ATTRACTIVITY IN A FOUR-TERM RECURRENCE RELATION

Main Article Content

LONG-TU LI
SUI SUN CHENG

Abstract




Positive solutions of the four-term recurrence relation $x_{n+1}=f(x_n)g(x_{n-1}, x_{n-2})$ are shown to converge to its positive equalibrium points under relative mild conditions.




Article Details

How to Cite
LI, L.-T., & CHENG, S. S. (2021). GLOBAL ATTRACTIVITY IN A FOUR-TERM RECURRENCE RELATION. Tamkang Journal of Mathematics, 30(3), 223–229. https://doi.org/10.5556/j.tkjm.30.1999.4229
Section
Papers

References

V. L. Kocic and G. Ladas, Global asymptotic behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.

E. Camouzis, E. A. Grove, G. Ladas and V. L. Kocic, Monotone unstable solutions of difference equations and conditons for boundedness, J. Difference Eq. Appl. 1(1995), 17- 44.

L. T. Li, Q. S. Qiu and Z. Yu, Permanence of $x_{n+1} = x_n^2 f(x_n)g(x_{n-1})$, J. Difference Eq Appl. 2(1996), 333-338.

L T. Li, Global asymptotic stability of $x_{n+1} =F(x_n)g(x_{n-1})$, Ann. Diff. Eq., to appear.

Most read articles by the same author(s)

1 2 > >>