ON THE EXTENSOIN OF BERNOULLI, EULER AND EULERIAN POLYNOMIALS

Main Article Content

S. N. SINGH
S. S. MISHRA

Abstract




Here an attempt has been made to extend the Bernoulli, Euler and Eulerian polynomials in multiplication theorem and finite difference formula have been established.




Article Details

How to Cite
SINGH, S. N., & MISHRA, S. S. (1996). ON THE EXTENSOIN OF BERNOULLI, EULER AND EULERIAN POLYNOMIALS. Tamkang Journal of Mathematics, 27(3), 189–199. https://doi.org/10.5556/j.tkjm.27.1996.4251
Section
Papers

References

L. Carlitz, "Eulerian numbers and polynomials," Math Magazine, 33(1959), 247-260.

L. Carlitz, "Extended Bernoulli and Eulerian numbers," Duke Math, J., 31(1964), 667-689.

L. Carlitz, "Enumeration of sequences by rises and falls; a refinement of the Simon New comb's Problem," Duke Math. J., 39(1972), 267-280.

L. Carlitz and R. Scovilje, "Generalized Eulerian numbers: Combinatorial applications", J. fur die reine und angewandte mathematik, 265(1874), 110-137.

J. F. Dillon and D. F. Roselle, "Simon Newcomb's problems," SIAM J. Appl. Math., 17(1969), 1086-1093.

D. Foata and M. P. Schutzenberger, Theorie geometrique des polynomes Eulerians, Leture Notes in Math. 138. Berlin, Heidelberg, New York: Springer-Verlag, 1970.

S. N. Singh and B. K. Rai, "Properties of some extended Bernoulli and Euler polynomials", The Fibanacci Qua., 21(3)(1983), 162-172.

S. N. Singh and V. S. Rai, "Certain Properties of extended Euler and Bernoulli polynomials," Tamkang Journal of Mathematics, 16(4)(1985), 1-12.

H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Wiley/Halsted, New York, 1984.