CONVOLUTIONS OF UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS
Main Article Content
Abstract
Let $f(z)=z+\sum_{n=2}^\infty a_n z^n$, $a_n\ge 0$ and $g(z)=z+\sum_{n=2}^\infty b_n z^n$, $b_n\ge 0$. We investigate some properties of $h(z) = f(z) *g(z) =z+\sum_{n=2}^\infty a_nb_n z^n$ where $f(z)$ and $g(z)$ belong to certain subclasses of starlike and convex functions.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
St. Ruscheweyh and T. Sheil-Small, "Hadamard proudcts of schlicht functions and the Polya-Schoenberg conjecture," Comment. Math. Helv., 48(1973), 119-135.
A. Schild and H. Silverman, "Convolutions of univalent functions with negative coefficients," Ann. Univ. M. Curie-sklodowska, Sect A, 29(1975), 99-106.
B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, "Univalent functions with positive coefficients," Tamkang J. Math, 25(1994), 225-230.