EXISTENCE OF INTEGRAL MANIFOLDS FOR IMPULSIVE DIFFERENTIAL EQUATION WITH SMALL PARAMETER

Main Article Content

S. KOSTADINOV
K. SCHNEIDER
M. VENKOVA

Abstract




Applying the Banach fixed-point theorem, sufficient conditions for the existence of bounded manifolds of Lipschitz type are found.




Article Details

How to Cite
KOSTADINOV, S., SCHNEIDER, K., & VENKOVA, M. (1998). EXISTENCE OF INTEGRAL MANIFOLDS FOR IMPULSIVE DIFFERENTIAL EQUATION WITH SMALL PARAMETER. Tamkang Journal of Mathematics, 29(4), 299–308. https://doi.org/10.5556/j.tkjm.29.1998.4259
Section
Papers

References

D. D. Bainov, S. I. Kostadinov, Abstract Impulsive Differential Equations, SCT Publishing, 1994.

D. D. Bainov, S. I. Kostadinov, Nguyen Van Minh, P. P. Zabreiko, "Continuous dependence on a parameter of the solutions of impulisve differential equations in a Banach space," International Journal of Theoretical Physics, 32(7)(1993).

D. D. Bainov, S. I. Kostadinov, Nguyen Van Minh, Dichotomies and Integral Manifolds of Impulsive Differential Equations, SCT Publishing, 1994.

D. D. Bainov, S. I. Kostadinov, P. P. Zabreiko, "Lp-equivalence of linear and nonlinear impulsive differential equation in a Banach·space," Journal of Mathematical Analysis and Applications, 159(2)(1991), 389-405.

A. M. Samoilenko, N. A. Perestyuk, Differential Equations with Impulsive Effect, Vista Skala, Kiev (1987), 285pp. (in Russian).

V. V. Strygin, V. A. Sobolev, Separation of the Motion by the Method of Integral Manifolds, 1988 (in Russian).