ON BOREL DIRECTION CONCERNING SMALL FUNCTIONS
Main Article Content
Abstract
In this paper, we shall prove Theorem 1
Let $f$ be nonconstant meromorphic in $\mathbb{C}$ with finite positive order $\lambda$, $\lambda(r)$ be a proximate order of $f$ and $U(r, f)=r^{\lambda(r)}$, then for each number $\alpha$,$0<\alpha<\pi/2$, there exists a number $\phi_0$ with $0\le \phi_0 < 2\pi$ such that the inequality
\[ \limsup_{r\to\infty}\sum_{i=1}^3 n(r, \phi_0, \alpha, f=a_i(z))/U(r, f)>0,\]
holds for any three distinct meromorphic function $a_i(z)(i=1, 2, 3)$ with $T(r,a_i)=o(U(r, f))$ as $r\to\infty$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. Diernacki, "Sur les directions de Borel des functions meromorphes," Acta Math., 56 (1930), 197-204.
C. T. Chuang, Sigular Direction of Meromorphic Functions (in Chinese), Science Press, Beijing, 1982.
H. Milloux, "Le theoreme de Picard, suites de functions holomorphes; functions meromorphes et functions entieres.'' J . de Math., 3 (1924), 345-401.
X. Pang, "On the singular direction of meromorphic function" (in Chinese), Advances in Mathematics (China), 16 (3) (1987), 309-315
M. Tsuji, "On Borel's directions of meromorphic functions of finite order, III, Kodai Math Sem. Rep., {1950), 104-108.
J M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ., N. Y., 1975.
G. Valiron, "Recherches sur le theoreme de M. Borel dans la theorie des functions meromorphes.'' Acta Math. 52 (1928), 67-92.
G. Valiron, Directions de Borel des functions meromorphes, Memor. Sci. Math., Fasc. 89, Press, 1938.