DVORETZKY-ROGERS THEOREM FOR SEQUENCE SPACES WITH $\sigma\mu$-TOPOLOGY
Main Article Content
Abstract
In this article Dvoretzky-Rogers theorem has been established for the sequence spaces equipped with $\sigma\mu$-topology.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
F. Andreu, "On the Dvoretzky-Rogers Theorem," Proc. Edinburgh Math. Soc., 27(1984), 105-113.
H. Apiola "Duality between Spaces of p-summable sequences, (p, q) - summing Operators and characterizations of Nuclearity," Math. Ann., 64(1976), 53-64.
N. De Grande De Kimpe, "Locally convex Space for which A(B) = A[E] and the Dvoretzky- Rogers Theorem," Compositio Math., 35(1977), 139-145
N. De Grande De Kimpe, "Generalized Sequence Spaces"; Bull. Soc. Math. Belg. 23(1981), 123-126.
A. Dvoretzky and C. Rogers, "Absolute and unconditional convergence in normed linear space," Proc. Nat. Acad. Sci. U.S.A., 36(1950), 192-197.
A. Grothendieck, "Sur certains classes de suites clans les espaces de Banach et le theoreme de Dvoretzky-Rogeres," Bol. Soc. Math. Sao Paulo, 8(1956), 81-110.
K. John, Counter Example to a conjecture of Grothendieck, Math. Ann., 265(1983), 169-179.
G. Kothe, Topological Vector Spaces I, (Berlin-Heidelberg New York Springer 1969).
G. Kothe, Topological Vector Spaces II, Berlin-Heidelberg New York: Springer 1980)
A. Pietsch, Nuclear Locally Convex Spaces, Berlin-Heidelberg New York: Springer 1972)
R. C. Rosier, "Dual Spaces of certain Vector Sequence Spaces," Pacific J. Math., 46(1973), 487-501.
R. C. Rosier "Vector Sequence Spaces and the Dvoretzky-Rogers Theorem," (Preprint)
W. H. Ruckle "Topologies on Sequence Spaces," Pacific J. Math., 42(1972), 235-249
W. H. Ruckle, Research Notes in Mathematics 49(Pitmann, 1981).
M. A. Sofi, "Some Criteria for Nuclearity," Math. Proc. Camb. Phil. Soc., 100(1986), 151-159.
Y. C. Wong,"Schwartz Spaces, Nuclear Spaces and Tensor Products," Springer Verlag Lect Notes 726, 1979.