WAVE POLYNOMIALS

Main Article Content

A. FRYANT
M. K. VEMURI

Abstract




A generating function for homogeneous polynomial solutions of the wave equation in $n$-dimensions is obtained. Application is made to developing an integral operator for analytic solutions of the wave equation.




Article Details

How to Cite
FRYANT, A., & VEMURI, M. K. (1997). WAVE POLYNOMIALS. Tamkang Journal of Mathematics, 28(3), 205–209. https://doi.org/10.5556/j.tkjm.28.1997.4317
Section
Papers

References

A. Erdclyi, Higher Transcendental Functions, McGraw Hill, New York, 1953

A. Fryant, "Inductively generating the spherical harmonics," SIAM J. Math. Anal., 22 {1991), 268-271.

A. Fryant, Integral operators for harmonic functions, in The Mathematical Heritage of C. F. Gauss, G. Rassias, ed. World Scientific, Singapore, 1991, 304-320

E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971

M. K. Vemun , "A simple proof of Fryant's theorem," SIAM J. Math. Anal., 26 {1995), 1644-1646.

E. T. Whittaker, "On the partial differential equations of mathematical physics," Math. Ann., 57 (1903), 333-355.