EVALUATION OF CERTAIN INTEGRALS IN TERMS OF GENERALIZED KAMPE DE FERIET FUNCTION AND LAURICELLA FUNCTION $F_D^{(n)}$

Authors

  • MEGUMI SAIGO Department of Applied Mathematics, Faculty of Science Fukuoka University, Fukuoka 814-01, Japan.
  • R. K. RAINA Department of Mathematics, College of Technology and Agricultural Engineering Rajasthan Agricultrual University, Udaipur 313001, Rajasthan, India.

DOI:

https://doi.org/10.5556/j.tkjm.26.1995.4377

Keywords:

Srivastava polynomials, Lauricella functions

Abstract

The paper is concerned with the evaluation ofthree integrals involving general polynomial systems and a rational function of trigonometric functions. Our new formulas reduce to many known formulas.

References

F. Brafman, "Some generating functions of Laguerre and Hermite polynomials," Canad. 1. Math 9(1957), 180-187.

L. F. Epstein, and J. H. Hubell, "Evaluation of a generalized elliptic-type integral," J. Res., 67B (1963), l.

H. Exton, Multiple Hypergeometric Functions and Applications, Halsted Press (Ellis Horwood, Chichester), John Wiley and Sons, New York-London-Sydney-Toronto, 1978.

J. Gillis, J. Jedwab, and D. Zeilberger, "A combinatorial interpretation of the integral of the product of Legendre polynomials," SIAM J. Math. Anal., 19(1988), 1455-1461

A. M. Mathai and R. K. Saxena, "Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences," Lecture Notes in Math., 348, Springer-Verlag, Berlin-Heidelberg­ New York, 1973.

M. Saigo and R. Srivastava, "Some new results for radiation-field problems," Fukuoka Univ. Sci. Rep. 20 (1990), 1-13.

H. M. Srivastava, "The Weyl fractional integral of a general class of polynomials," Boll. Un. Mat Ital. (6), 2B (1983), 219-288.

H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood, Chichester), John Wiley and Sons, New York-Chichester-Brisbane-Toronto, 1984.

Downloads

Published

1995-03-01

How to Cite

SAIGO, M., & RAINA, R. K. (1995). EVALUATION OF CERTAIN INTEGRALS IN TERMS OF GENERALIZED KAMPE DE FERIET FUNCTION AND LAURICELLA FUNCTION $F_D^{(n)}$. Tamkang Journal of Mathematics, 26(1), 41–47. https://doi.org/10.5556/j.tkjm.26.1995.4377

Issue

Section

Papers