ON CERTAIN GENERALIZATIONS OF THE SPIRAL-LIKE AND ROBERTSON FUNCTIONS
Main Article Content
Abstract
Let $S^\lambda(\alpha, \beta, A, B)$ denote the class of functions $f(z)=z+\sum_{n=2}^\infty a_nz^n$ which are analytic in the unit disc $U=\{z:|z|<1\}$ and satisfy the inequality
\[\left|\frac{F(z)}{(B-A)(F(z)+(1-\alpha)e^{-i\lambda}\cos \lambda)+AF(z)}\right|<1, \ \]
where $F(z)=zf'(z)/f(z)-1$ for some $\lambda, \alpha, \beta, A, B$ ($|\lambda|<\pi/2, 0\le \alpha< 1, 0<\beta\le 1, -1\le A< B\le 1$ and $0<B\le 1$) and for all $z\in U$. Further $f(z)$ is said to belong to the class $C^\lambda(\alpha, \beta, A, B)$ ($|\lambda|<\pi/2, 0\le \alpha< 1, 0<\beta\le 1, -1\le A< B\le 1$ and $0<B\le 1$) if and only if $zf'(z) \in S^\lambda(\alpha, \beta, A, B)$. In the present paper, the authors give several representation formulas, distortion theorems, and coefficient bounds for functons belonging to these classes. They also obtain the sharp radius of $\gamma$-spiral and starlikeness for the class $S^\lambda(\alpha, \beta, A, B)$ and the sharp radius of $\gamma$-convex and convexity for the class $C^\lambda(\alpha, \beta, A, B)$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
O. P. Ahuja, "Certain generalization of the Robertson functions," Yokohama Math. J. 31 (1983), 5- 11.
M. K. Aouf, "Bounded p-valent Robertson functions of order oi," Indian J. Pure Appl. Math. 16 (1985), no. 7, 775-790.
M. K. Aouf, "Bounded spiral-like functions with fixed second coefficient," Internat. J. Math. Math. Sci. 12 (1989), no. 1, 113-118.
M. K. Aouf, "On coefficient bounds of a certain class of p-valent $lambda$-spiral functions of order a ," lnternat. J. Math. Math. Sci. 10 (1987), no. 2, 259-266.
M. K. Aouf, "On a class of p-valent starlike functions of order oi," Internat. J. Math. Math. Sci. 10 (1987), no. 4, 733-744.
M. K. Aouf, "On subclasses of starlike functions of order oi and type $beta$," Tamkang J. Math. 21 (1990), no. 1, 41-58.
S. K. Bajpai and T. J. S. Mehrok, "On the cqefficient structure and a growth theorem for the functions f(z) for which zf'(z) is spirallike," Publ. Inst. Math. (Boograd) (N.S.) 16 (30) (1973), 5- 1 2 .
P. N. Chichra, "Regular functions f (z) for which zf '(z) is $alpha$-spirallike," Proc. Amer. Math. Soc. 49 (1975), 151-160.
Dashrath and S. L. Shukla, "Coefficient estimates for subclass of spirallike functions," Indian J. Pure Appl. Math. 14 (1983), no. 4, 431-439.
R. M. Goel, "A subclass of a-spiral functions," Pub[. Math. Debrecen 23 (1976), 79-84.
R. M. Goel and B. S. Mehrok, "On the coefficients of a subclass of starlike functions," Indian J. Pure Appl. Math. 12 (1981), no. 5, 634-647.
H. S. Gopalakrishna and P. G. Umarani, "Coefficient estimates for some classes of spiral-like functions," Indian ]. Pure Appl. Math. 11 (1980), no. 8, 1011-1017.
W. Janowski, "Some extremal problems of certain families of analytic functions," Ann. Polon. Math. 28 (1973), 297-326.
O . P. Juneja and M. L. Mogra, "On starlike functions of order oi and type $beta$," Rev. Roumaine Math. Pures Appl. 23 (1978), 751-765.
F. R. Keogh and E. P. Merkes, "A coefficient inequality for certain classes of analytic functions," Proc. Amer. Math. Soc. 20 (1969), 8-12.
P. K. Kulshrestha, "Bounded Robertson functions," Rend. Mat. (6) 9 (1976), 137-150.
V. Kumar and S. L. Shukla, "Radii of spiral-likeness of certain analytic functions," Tamkang J. Math. 17 (1986), no. 4, 51-58. J
R. J. Libera, "Univalent a-spiral functions,'' Canad. J. Math. 19 (1967), 449-456.
R. J. Libera and M. R. Ziegler, "Regular functions f (z) for which zf '(z) is a-spiral," Trans. Amer. Math. Soc. 166 (1972), 361-370.
B. Makowka, "On some subclasses of univalent functions," Zesz. Nau.k. Polit. Lodzkiejnr 254, Z. 9 (1976), 71-76.
M. L. Mogra, "On a class of starlike functions in the unit disc," I. J. Indian Math. Soc. 40 (1976), 159 - 161.
M. L. Mogra, "Spirallike and Robertson functions with fixed secend coefficient," Riv. Mat. Univ. Parma (4) 9 (1983), 411-419.
M. L. Mogra and 0 . P. Ahuja, "On spirallike functions of order a and type $beta$," Yokohama Math. J. 29 (1981), 145-156.
Z. Nehari, Conformal Mapping, McGrow-Hill Book Co., Inc., New york (1952).
K. S. Padmanabhan, "On certain classes of starlike functions in the unit disc," J. Indian Math. Soc. 32 (1968), 89-103.
D. A. Patil and N. K. Thakare, "On coefficient bounds of p-valent $lambda$-spiral functions of order a," Indian J. Pure Appl. Math. 10 (1979), 842-853.
M. S. Robertson, "Univalent functions f (z) for which zf '(z) is spirallike," Michigan Math. J. 16 (1969), 97-101.
P. I. Sizuk, "Regular functions f (z) for which zf '(z) is 8-spiral shaped of order a," Sibrisk. Mat. z. 16 (1975), 1286-1290, 1371.
L. Spacek, "Pfispevek k teorii funkcki prostych," Casopis Pest. Mat. Fys. 62 (1932), 12-19.
D. J. Wright, "On a class of starlike functions," Compositio Math. 21 (1969), 122-124.
J. Zamorski, "About the extremal spiral schlicht functions," Ann. Polen. Math. 9 (1962), 265-273.