ALMOST RIEMANN INTEGRABLE FUNCTIONS
Main Article Content
Abstract
An arbitrary function $f$ on a bounded interval $[a,b]$ is termed an almost $R$-integrable function if there exists a Riemann integrable function $g$ such that $f =g$ a.e. In this note a characterization of the class of almost $R$-integrable
functions is obtained.
Article Details
How to Cite
DAMLAKHI, M. (1995). ALMOST RIEMANN INTEGRABLE FUNCTIONS. Tamkang Journal of Mathematics, 26(3), 231–233. https://doi.org/10.5556/j.tkjm.26.1995.4400
Issue
Section
Papers

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Soo Bong Chae, Lebesgue integration, Marcel Dekker, Inc. 1980.
F. Riesz and B. Sz. Nagy, Functional Analysis, Ungar Publishing Co., Sixth printing, 1972.