STRONGLY ORE INVARIANT RINGS

Authors

  • AHMED A. M. KAMAL Cairo University, Faculty of Science, Department of Mathematics Giza, Egypt.

DOI:

https://doi.org/10.5556/j.tkjm.26.1995.4407

Keywords:

strongly Ore invariant rings, differential operator rings, von Neumann regular rings, skew polynomial rings, derivations, Ore extensions, automorphisms

Abstract

STRONGLY ORE INVARIANT RINGS

References

E. P. Armendariz, H. K. Koo and J. K. Park, "Isomorphic Ore extensions," Communications in Algebra, 15 (12), 2633-2652, 1987.

J. W. Brewer and E. A. Rutter, "Isomorphic polynomial rings," Arch. Math., 23, 484-488, 1972.

D. B. Coleman and E. E. Enochs, "Isomorphic polynomial rings," Proc. Amer. Math. Soc., 27, 247-252, 1971.

P. Eakin and K. K. Kubota, "A note on the uniqueness of rings of coefficients in polynomial rings," Proc. Am er. Math. Soc., 32(2), 1972.

M. Ferrero, K. Kishimoto and K. Motose, "On radicals of skew polynomial rings of derivation type," J. of the London Math. Soc., 28(1), 9-16, 1982.

K. R. Goodearl, "Prime ideals in skew polynomial rings and Quantized Weyl Algebras," Journal of Algebra, Vol.150, No. 2, 324-377 August 15, 1992.

J. M. Goursaud, Sur les anneaux introduits par la notion de module Projectif, Theses Presentee a'l 'Univcrsite de Poitiers, 1977.

M. Hochster, Nonuniqueness of coefficient rings in a Polynomial ring, Proc. Amer. Math. Soc., 34, 81-82, 1972.

A. A. M. Kamal, "Idempotents in Polynomial rings," Acta Math. Hung., 59(3-4), 355-363, 1992.

A. Leroy and J. Matczuk, "Prime ideals of Ore extensions," Comm. in Alg., (19), 1893-1907, 1991.

J.C . Mcconnell and J. C. Robson, Non commutative Noetherian rings, John Wiley, 1987.

M. Rimmer and K. R. Pearson, "Nilpotents and units in skew polynomial rings over commutative rings," J. Austral. Math. Soc., 28, 423-426, 1979.

Downloads

Published

1995-12-01

How to Cite

KAMAL, A. A. M. (1995). STRONGLY ORE INVARIANT RINGS. Tamkang Journal of Mathematics, 26(4), 277-282. https://doi.org/10.5556/j.tkjm.26.1995.4407

Issue

Section

Papers