ALGEBRAIC EQUIVALENCE OF QUASINORMAL OPERATORS

Main Article Content

KUNG-YEU CHEN

Abstract




Let $T_j =N_j\oplus( S\otimes A_j)$ be quasinormal, where $N_j$ is normal and $A_j$ is a positive definite operator, $j = 1, 2$. We show that $T_1$ is algebraically equivalent to $T_2$ if and only if $\sigma(A_1) =\sigma(A_2)$ and $\sigma(N_1)\backslash\sigma_{ap}(S\otimes A_1) =\sigma(N_2)\backslash\sigma_{ap}(S\otimes A_2)$. This generalizes the corresponding result for normal and isometric operators.




Article Details

How to Cite
CHEN, K.-Y. (1994). ALGEBRAIC EQUIVALENCE OF QUASINORMAL OPERATORS. Tamkang Journal of Mathematics, 25(1), 87–91. https://doi.org/10.5556/j.tkjm.25.1994.4429
Section
Papers

References

A. Brown, "On a class of operators", Proc. Amer. Math. Soc., 4 {1953), 723-728.

K. Y. Chen, Quasinormal Operators: Similarity, Quasismilarity and Compact Perturbation, Ph. D. dissertation, National Chiao Tung University, 1991.

L. A. Coburn, "The C*-algebra generated by an isometry", Bull. Amer. Math. Soc., 73 (1967), 722-726.