SOME THEOREMS ON A GENERALIZED LAPLACE TRANSFORM OF GENERALIZED FUNCTIONS
Main Article Content
Abstract
In this paper we extend the generalized Laplace transform
\[F(s)=\frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1)}\int_0^\infty (st)^\beta\ _1F_1(\beta+\eta+1, \alpha+\beta+\eta+1; -st)f(t) dt\]
where $f(t)\in L(0,\infty)$, $\beta\ge 0$, $\eta > 0$; to a class of generalized functions. We will extend the above transform to a class of generalized functions as a special case of the convolution transform and prove an inversion formula for it.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
A. Erdelyi, Higher Transcendental Functions, Vol.I, McGraw Hill, 1953.
A. C. Gupta, and A.K. Mahato, On a generalized Laplace Transform of Generalized Functions, communicated for publication in Mathematica Balkanica, Yugoslavia.
A. C. Gupta, and A. K. Mahato, "Complex Inversion and Uniqueness Theorems for a Generalized Laplace Transform," Indag. Mathern., N.S., 2(3), 301-310, 1991.
Hirschman and Widder, The Convolution Transform, Princeton University Press, 1955.
J. M. C. Joshi, "On a Generalized Stieltjes Transform," Pacific l our. Math., 14(1969), 969-976.
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
A. H. Zernanian, Generalized Integral Transformation, Interscience Pub!., New York, 1968.