COMMUTATIVITY OF RIGHT $S$-UNITAL RINGS UNDER SOME POLYNOMIAL CONSTRAINTS
Main Article Content
Abstract
In the present paper we discuss the commutativity of certain rings, namely rings with unity 1 and right s-unital rings under each of the following conditions:
\[ (P1)[yx^m - x^nf (y), x] = 0, \quad (P1)^*[yx^m - f (y)x^n, x] = 0, \]
where $m$, $n$ are fixed non-negative integers and $f(x)$ is a polynomial in $X^2\mathbb{Z}(X)$ varying with the pair of ring elements $x$, $y$. Further, the results have been extended to the case when $m$ and $n$ depend on the choice of $x$ and $y$ and the ring satisfies the Chacron's condition.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. Ashraf, M. A. Quadri and Asma Ali, "On commutativity of one sided s-unital rings", Rad. Mat., 6 (1990), 111-117.
I. N. Herstein, "Two remarks on the commutativity of rings", Canad. J. Math., 7 (1955), 411-412.
Y. Hirano, Y. Kobayashi and H. Tominaga, "Some polynomial identities and commutativity of s-unital rings", Math. J. Okayama Univ. 24 (1982), 7-13.
II. Komatsu and H. Tominaga, "Chacron's condition and commutativity theorems", Math. J. Okayama Univ., 31 (1989), 101-120.
II. Komatsu and H. Tominaga, "Some commutativity theorems for left s-unital rings", Resultate Math. 15 (1989), 335-342.
H. Komatsu, T. Nishinaka and H. Tominaga, "On commutativity of rings", Rad. Mat. 6 (1990), 303-311.
I. Mogami and M. Hongan, "Note on commutativity of rings", Math. J. Okayama Univ., 20 (1978), 21-23.
T. Nishinaka, "A commutativity theorem for rings", Rad. Mat., 6 (1990), 357-359.
W. Streb, "Zur Struktur nichtkommutativer Ringe", Math. J. Okayama Univ. 31 (1989), 135-140.
H. Tominaga and A. Yaqub, "Some commutativity conditions for left s-unital rings satisfying certain polynomial identities", Resultate der Math. 6 (1983), 217-219.