COMMUTATIVITY OF RIGHT $S$-UNITAL RINGS UNDER SOME POLYNOMIAL CONSTRAINTS

Main Article Content

M. ASHRAF
M. A. QUADRI
V. W. JACOB

Abstract




In the present paper we discuss the commutativity of certain rings, namely rings with unity 1 and right s-unital rings under each of the following conditions:


\[ (P1)[yx^m - x^nf (y), x] = 0, \quad (P1)^*[yx^m - f (y)x^n, x] = 0, \]


where $m$, $n$ are fixed non-negative integers and $f(x)$ is a polynomial in $X^2\mathbb{Z}(X)$ varying with the pair of ring elements $x$, $y$. Further, the results have been extended to the case when $m$ and $n$ depend on the choice of $x$ and $y$ and the ring satisfies the Chacron's condition.




Article Details

How to Cite
ASHRAF, M., QUADRI, M. A., & JACOB, V. W. (1993). COMMUTATIVITY OF RIGHT $S$-UNITAL RINGS UNDER SOME POLYNOMIAL CONSTRAINTS. Tamkang Journal of Mathematics, 24(1), 23–28. https://doi.org/10.5556/j.tkjm.24.1993.4470
Section
Papers

References

M. Ashraf, M. A. Quadri and Asma Ali, "On commutativity of one sided s-unital rings", Rad. Mat., 6 (1990), 111-117.

I. N. Herstein, "Two remarks on the commutativity of rings", Canad. J. Math., 7 (1955), 411-412.

Y. Hirano, Y. Kobayashi and H. Tominaga, "Some polynomial identities and commutativity of s-unital rings", Math. J. Okayama Univ. 24 (1982), 7-13.

II. Komatsu and H. Tominaga, "Chacron's condition and commutativity theorems", Math. J. Okayama Univ., 31 (1989), 101-120.

II. Komatsu and H. Tominaga, "Some commutativity theorems for left s-unital rings", Resultate Math. 15 (1989), 335-342.

H. Komatsu, T. Nishinaka and H. Tominaga, "On commutativity of rings", Rad. Mat. 6 (1990), 303-311.

I. Mogami and M. Hongan, "Note on commutativity of rings", Math. J. Okayama Univ., 20 (1978), 21-23.

T. Nishinaka, "A commutativity theorem for rings", Rad. Mat., 6 (1990), 357-359.

W. Streb, "Zur Struktur nichtkommutativer Ringe", Math. J. Okayama Univ. 31 (1989), 135-140.

H. Tominaga and A. Yaqub, "Some commutativity conditions for left s-unital rings satisfying certain polynomial identities", Resultate der Math. 6 (1983), 217-219.

Most read articles by the same author(s)