EXISTENCE OF SOLUTIONS OF IMPLICIT DIFFERENTIAL INCLUSIONS
Main Article Content
Abstract
We prove the existence of solutions for the implicit differen- tial inclusions of the form
\[ \dot x(t) \in A(t,x)+F(t,x,\dot x) \text{ for } t \in I, \text{ a.e. } \qquad x(r) =0 \]
with $I = [r,r+a]$ by using the Covitz-Nadler fixed point theorem.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
A. Anguraj and K. Balachandran, "On the solution sets of differential inclusion in Banach spaces", Tamkang J. Math. 23 (1992), No. 2, 57-63.
J. P. Aubin and A. Cellina, "Differential Inclusions", Springer-Verlag, Berlin, 1984.
.J. R. Bridgland, T. F., "Trajectory integrals of setvalued functions", Pacific J. Math., 33 (1970), 43-67.
A. Fryszkowski, "Continuous selections for a class of nonconvex multivalued maps", Studia Math., 76 (1983), 163-174.
M. Kisielewicz, "Subtrajectory integrals of setvalued functions and neutral functional differential inclusions", Funkcialaj Ekvacioj, 32 (1989), 163-18 9.
E. Michael, "Continuous selections I", Ann. Math., 63 (1956), 361-382.
N. S. Papageorgiou, ''On the theory of functional differential inclusions of neutral type in Banach spaces", Funkcialaj Ekvacioj, 31 (1988), 103-120.
0 . N. Ricceri, "Classical solutions of the problem dot x in F(t, x, x), x(to) = xo, x(to) = Yo in Banach spaces", Funkcialaj Ekvacioj, 34 (1991), 127-141.