ASYMPTOTICALLY MONOTONE SOLUTIONS OF A NONLINEAR DIFFERENCE EQUATION
Main Article Content
Abstract
Necessary conditions as well as sufficient conditions for the eventually positive solutions of a class of nonlinear difference equation to be monotone are derived.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
S. S. Cheng, "Sturmian comparison theorems for three-term recurrence equations", J. Math. Anal. Appl., 111 {1985), 465-474.
S. S. Cheng, T. C. Yan and H. J. Li, "Oscillation criteria for second order difference equation", Funkcialaj Ekvacioj, 34 (1991), 223-239.
J. W. Hooker and W. T. Patula, "Riccati type transformations for second-order linear difference equations", J. Math. Anal. Appl., 82 (1981), 451-462.
J. W. Hooker and W. T. Patula, "A second order nonlmear difference equations: oscilla- tion and asymptotic behavior", J. Math. Anal. Appl., 91 (1983), 9-29.
Z. Nehari, "Oscillation criteria for second-order linear differential equations", Trans. AMS., 85 (1957), 428-445.
B. Szmanda, "Oscillation theorems for nonlinear second order difference equations", J. Math. Anal. Appl., 19 (1981), 90-95.
B. Szmanda, "Oscillation criteria for second order nonlinear difference equations", An nales Polonici Mathemtici, 43 (1983), 225-235.