ASYMPTOTICALLY MONOTONE SOLUTIONS OF A NONLINEAR DIFFERENCE EQUATION

Main Article Content

HORNG-JAAN LI
SUI-SUN CHENG

Abstract




Necessary conditions as well as sufficient conditions for the eventually positive solutions of a class of nonlinear difference equation to be monotone are derived.




Article Details

How to Cite
LI, H.-J., & CHENG, S.-S. (1993). ASYMPTOTICALLY MONOTONE SOLUTIONS OF A NONLINEAR DIFFERENCE EQUATION. Tamkang Journal of Mathematics, 24(3), 269–282. https://doi.org/10.5556/j.tkjm.24.1993.4497
Section
Papers

References

S. S. Cheng, "Sturmian comparison theorems for three-term recurrence equations", J. Math. Anal. Appl., 111 {1985), 465-474.

S. S. Cheng, T. C. Yan and H. J. Li, "Oscillation criteria for second order difference equation", Funkcialaj Ekvacioj, 34 (1991), 223-239.

J. W. Hooker and W. T. Patula, "Riccati type transformations for second-order linear difference equations", J. Math. Anal. Appl., 82 (1981), 451-462.

J. W. Hooker and W. T. Patula, "A second order nonlmear difference equations: oscilla- tion and asymptotic behavior", J. Math. Anal. Appl., 91 (1983), 9-29.

Z. Nehari, "Oscillation criteria for second-order linear differential equations", Trans. AMS., 85 (1957), 428-445.

B. Szmanda, "Oscillation theorems for nonlinear second order difference equations", J. Math. Anal. Appl., 19 (1981), 90-95.

B. Szmanda, "Oscillation criteria for second order nonlinear difference equations", An­ nales Polonici Mathemtici, 43 (1983), 225-235.