ON BEST APPROXIMATIONS IN THE LEBESGUE-BOCHNER SPACE $L^1(X)$
Main Article Content
Abstract
If $\Sigma_0\subseteq \Sigma$ is a sub-$\sigma$-field and $X$ a reflexive Banach space, we show that the Lebesgue-Bochner space $L^1(\Sigma_0, X )$ is proximinal in $L^1(\Sigma, X)$. Then we examine how the set of best approximations and the distance function depend on $\Sigma_0$.
Article Details
How to Cite
PAPAGEORGIOU, N. S. (1993). ON BEST APPROXIMATIONS IN THE LEBESGUE-BOCHNER SPACE $L^1(X)$. Tamkang Journal of Mathematics, 24(3), 303–307. https://doi.org/10.5556/j.tkjm.24.1993.4501
Issue
Section
Papers
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
J. Diestel and J. Uhl, "Vector Measures", Math Surveys, Vol. 15, AMS, Providence, RI (1977).
M. Metivier, "Semimatringales", DeGruyter, Berlin (1982).
T. Shintani and T. Ando, "Best approximations in L^1-space", Z. Wahnihein Verw, Gabiete 33 (1975), 33-39.