COMPACT LIE GROUP ACTIONS ON ASPHERICAL $A_k(\pi)$-MANIFOLDS
Main Article Content
Abstract
Let M be an aspberical $A_k(\pi)$-manifold and $\pi'$-torsion-free, where $\pi'$ is some quotient group of $\pi$. We prove that
(1) Suppose the Euler characteristic $\mathcal{X}(M) \neq 0$ and $G$ is compact Lie group acting effectively on $M$, then $G$ is finite group
(2) The semisimple degree of symmetry of $M$ $N_T^s \le (n - k)(n - k+1)/2$. We also unity many well-known results with simpler proofs.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
I. Berstein, "On Covering space and Lie group actions", Contemporay Math., 37 (1985), 11- 13 .
W. Browder and W. C. Hsiang, "G-actions and fundamental group", Invent. Math., 65 (1982), 411-424.
P. E. Conner and D. Montgomery, "Transformation groups an K(pi,1)", I. Michigan Math., J. 6 (1059), 405-412.
H. Donnelly and R. Schultz, "Compact group actions and maps into aspherical manifolds", Topology, 21 (1982), 443-455.
M. Gromov and H. B. Lawson, "Spin and scalar curvature in the presence of a fundamental group", I, Ann. of Math., (2) 111 (1980), 209-230.
H. T. Ku, "Group actions on aspherical Ak(pi)- manifolds with non-zero Euler characteristics", Proc. Amer. Math. Soc., 90 (1984), 459-462.
H. T. Ku, "A generalization of the Conner inequalities", Proc. Conf. Transformations Groups, Springer- Verlag, Berlin and New York, (1968), 401-414.
H. T. Ku and M. C. Ku, "Group actions on Ak(pi)-manifolds", Trans. Amer. Math. Soc., 245 (1978), 469-492.
H. T. Ku and M. C. Ku, "Group actions on aspherical Ak(pi)-manifolds", Trans. Amer. Math. Soc., 278 (1983), 841-859.
H. T. Ku and M. C. Ku, "The Pontrjagin numbers of an orbit map and generalised Gsignature theorem, transformations groups", Lecture Notes in Math., 1375 (1989), 198- 206.
H. B. Lawson and S. T. Yau, "Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres", Comment. Math. Helv., 49 (1974), 232-244.
D. Montgomery and Samelson, "Groups transitive on n-dimensional torus", Bull. Amer. Math. Soc., 49 (1943) 455-456.
R. Scheon and S. T . Yau, "Compact group actions and the topology of manifolds with non-positive curvature", Topology, 18 {1979), 361-380.