COMPACT LIE GROUP ACTIONS ON ASPHERICAL $A_k(\pi)$-MANIFOLDS

Main Article Content

DINGYI TANG

Abstract




Let M be an aspberical $A_k(\pi)$-manifold and $\pi'$-torsion-free, where $\pi'$ is some quotient group of $\pi$. We prove that


(1) Suppose the Eu­ler characteristic $\mathcal{X}(M) \neq 0$ and $G$ is compact Lie group acting effectively on $M$, then $G$ is finite group


(2) The semisimple degree of symmetry of $M$ $N_T^s \le (n - k)(n - k+1)/2$. We also unity many well-known results with simpler proofs.




Article Details

How to Cite
TANG, D. (1993). COMPACT LIE GROUP ACTIONS ON ASPHERICAL $A_k(\pi)$-MANIFOLDS. Tamkang Journal of Mathematics, 24(4), 395–403. https://doi.org/10.5556/j.tkjm.24.1993.4511
Section
Papers

References

I. Berstein, "On Covering space and Lie group actions", Contemporay Math., 37 (1985), 11- 13 .

W. Browder and W. C. Hsiang, "G-actions and fundamental group", Invent. Math., 65 (1982), 411-424.

P. E. Conner and D. Montgomery, "Transformation groups an K(pi,1)", I. Michigan Math., J. 6 (1059), 405-412.

H. Donnelly and R. Schultz, "Compact group actions and maps into aspherical manifolds", Topology, 21 (1982), 443-455.

M. Gromov and H. B. Lawson, "Spin and scalar curvature in the presence of a fundamental group", I, Ann. of Math., (2) 111 (1980), 209-230.

H. T. Ku, "Group actions on aspherical Ak(pi)- manifolds with non-zero Euler character­istics", Proc. Amer. Math. Soc., 90 (1984), 459-462.

H. T. Ku, "A generalization of the Conner inequalities", Proc. Conf. Transformations Groups, Springer- Verlag, Berlin and New York, (1968), 401-414.

H. T. Ku and M. C. Ku, "Group actions on Ak(pi)-manifolds", Trans. Amer. Math. Soc., 245 (1978), 469-492.

H. T. Ku and M. C. Ku, "Group actions on aspherical Ak(pi)-manifolds", Trans. Amer. Math. Soc., 278 (1983), 841-859.

H. T. Ku and M. C. Ku, "The Pontrjagin numbers of an orbit map and generalised Gsignature theorem, transformations groups", Lecture Notes in Math., 1375 (1989), 198- 206.

H. B. Lawson and S. T. Yau, "Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres", Comment. Math. Helv., 49 (1974), 232-244.

D. Montgomery and Samelson, "Groups transitive on n-dimensional torus", Bull. Amer. Math. Soc., 49 (1943) 455-456.

R. Scheon and S. T . Yau, "Compact group actions and the topology of manifolds with non-positive curvature", Topology, 18 {1979), 361-380.