GEODESIC TUBES ON LOCALLY SYMMETRIC SPACES
Main Article Content
Abstract
In this paper we state and prove a characteristic relation which exists, between the eigenspaces of the Ricci transformation $R(N, - )N$ acting on the orthocomplement space of $N$ in $T_mM$ where $m \in M$, $M$ being a locally symmetric space, and the Weingarten map $S_N$ of small enough geodesic tubes of $M$.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
D. E. Blair and A. J. Ledger, "A characterization of oriented Grassman manifolds", Rocky Mountain Journal of Math., 14, No. 3, (1984), 573-584.
B. Y. Chen, "Geometry of submanifolds", Vol. 22, M. Dekker (1973).
E. Fermi, "Sopra i fenomeni che arrengono in vicinanza di una linea oraria", Atti R. Acad. Lincei Rend. cl. Sci. Fis. Mat. Natur., 31 (1992), 21-23, 51-52, 101-103.
A. Gray, "Comparison theorems for volumes of tubes as generalizations of the Weyl tube formula", Topology, 21 (1982), 201-228.
A. Gray, "Tubes", Addision Wesley Publ. Company, (1990).
A. Gray and L. Vanhecke, "The volumes of tubes about curves in a Riemannian manifold", Proc. Lond. Math. Soc., XLIV, (1982), 215-243.
A. J. Ledger, "A charactenzat1on of complex Grassmann manifolds", Indian J. Pure Appl. Math., 15 (1) (1984), 99-112.
A. J. Ledger, "Geodesic spheres on Grassmann manifolds", Yokohama Math. J., 31 (1986), 59-71.
B. J. Papantoniou, "An investigation of a tensor field on the Grassmannian G2,P (IR)", Indian J. Pure Appl. Math., 16 (10) (1986), 110-1-1116.
B. J. Papantoniou, "A characterization of the symmetric space SU(n)/ SO(n) by geodesic spheres", Linear Algebra and 山 Applications, 136 (1990), 133-164.
B. J. Papantoniou, "A characterization of the Grassmann manifold G2,p(IR)", another review, lnternat. J. Math. and Math. Sci., Vol. 12 No. 2 (1989), 321-332.
B. J. Papantoniou, "Geodesic tubes and spaces of constant curvature", submitted.
B. J. Papantoniou, "Geodesic Tubes, Jacobi Vector Fields and Kahler Manifolds", submitted.
L. Vanhecke and T. Willmore, "Jacobi fields and geodesic spheres", Proc. of the Royal Soc. of Edinburgh, 82A (1979), 233-240.
H. Weyl, "On the volume of tubes", Amer. J. Math., 61 (1939), 461-472.