ON THE CONVERGENCE OF THE HALLEY METHOD FOR NONLINEAR EQUATION OF ONE VARIABLE
Main Article Content
Abstract
In this paper, under standard Newton-Kantorovich condi tions, we establish the Kantorovich convergence theorem and give the optimal error bound for Halley iteation method for solving nonlinear complex equations on the complex plane.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
G. Alefeld, "On the Convergence of Halley's method", Amer. Math. Monthly, 88 (1981), 530-536.
G. H. Brown, "On Halley's Variation of Newton's Method", Amer. Math. Monthly, 84 (1977), 726-728.
M. Davies and B. Dawson, "On the Global Convergence of Halley's Iteartion formaula", Numer. Math., 24 (1975), 133-135.
W. Gander, "On Halley's Iteration Method", Amer. Math. Monthly, 92 (1985), 131-134.
B. Hansen and M. Patrick, "On a family of Root-Finding Methods", Numer. Math., 27 (1977), 257-269.
A. M. Ostrowski, "Solutions of Equations in Euclidean and Banach Spaces", Academic Press, New York and London, 1973.
Z. S. Sun, "A Local Convergence Theorem of Halley's Iteration Method for Finding Complex Zeros", Numer . Math. J. Chinese Univs, 6:3 (1984), 222-227.
T . Yamamoto, "On the Method of Tangent Hyperbolas in Banach Spaces", J. Computational and Applied Math., 21 (1988), 75-86.