HERMITIAN SURFACES OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE II

Main Article Content

TAKUJI SATO
KOUEI SEKIGAWA

Abstract




The present paper ss a continuation of our previous work [7]. We shall prove that a compact Hernutian surface of pointwise positive constant holomorphic sectional curvature is biholomorphica.lly equivalent to a complex projective surface.




Article Details

How to Cite
SATO, T., & SEKIGAWA, K. (1992). HERMITIAN SURFACES OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE II. Tamkang Journal of Mathematics, 23(2), 137–143. https://doi.org/10.5556/j.tkjm.23.1992.4536
Section
Papers

References

Balas, A., "Compact Hermitian manifolds of constant holomorphic sectional curvature" Math. Z. 189, 193-210, (1985).

Balas, A. and Gauduchon, P., "Any Hermitian metric of constant non-positive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kahler" Math. Z. 190, 39-43, (1985).

Baslas, A., "On the sum of the Hermitian scalar curvatures of a compact Hermitian manifold", Math. Z. 195, 429-432, (1987).

Bombieri, E. and Husemoller, D., "Classification and embeddings of surfaces", Proc. Symp. Pure Math. 29, 329-420, (1975).

Kodaira, K., "On the structure of compact analytic surfaces I II III IV", Amer. J. Math. 86, 88, 90, 751-798, 682-721, 55-83, 1048-1066, (1964; 1966; 1968).

Miyaoka, Y., "On the Chern numbers of surfaces of general type", Invent. Math. 42 225-237, (1977).

Sato, T. and Sekigawa, K., "Hermitian surfaces of constant holomorphic sectional curva­ture", Math. Z. 205, 659-668, (1990).

Sekigawa, K., "On some 4 dimensional compact almost Hermitian manifolds", J. Ramanujan Math. Soc. 2, 101-116, (1987).

Tricerri, F. and Vaisman, I., "On some 2-dimensional Hermitian manifolds", Math. Z. 192, 205-216, (1986).

Vaisman, I., "Some curvature properties of complex surfaces" Ann. Mat. Pura Appl. 32, 1-18, (1982).

Wu, W . T ., "Sur les classes caractenstiques des structures :fibrees spheriques", Actual. Sci. Ind. 1183, 1-89, (1952).