ON EXTREME POINTS OF A CERTAIN LINEAR SPACE OF LOCALLY UNIVALENT FUNCTIONS
Main Article Content
Abstract
Let $H = (H, \oplus, \odot)$ denote the real linear space of locally univalent normalized functions in the unit disc as defined by Hornich. For $-1\le B <A\le 1$, $k>2$, the classes $V_k[A,B]$ of functions with bounded boundary rotation are introduced and this linear space structure is used to determine the extreme points of the classes $V_k[A,B]$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
H. Hornich, "Ein Banachraum analytischere Funktionen in Zusamrnenhang mit den schlichten Funktionen", Mh. Math. 73(1969), 36-45.
K. Inayat Noor, "On some univalent integral operators", J. Math. Anal. Appl. 128 (1987), 586-592.
G. Schober, "Univalent Functions-Selected Topics", Leet. Notes Math. 478, Berlin-Rei delberg-New York: Springer, 1975.
N. Dunford and J. Schwartz, "Linear operators I, General Theorey", Interscience, New York, 1958.
W. Koepf, "Classical families of univalent functions in the Hornich Space", Mh. Math. 100(1985), 113-120.