ON THE TOTAL CURVATURE OF SURFACES IMMERSED IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR
Main Article Content
Abstract
ON THE TOTAL CURVATURE OF SURFACES IMMERSED
IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
B. Y. Chen, On the total curvature of immersed manifolds I, II,_III, IV, V, and VI, Amer. J. Math. 93(1971), 148-162; Amer. J. Math. 94(1972), 799-809; Amer. J. Math. 95(1973), 636-642; Bull. Inst. Math. Acad. Sinica 7(1979); Bull. Inst. Matth, A cad. Sinica 9(1981); 509-516; Bull. Inst. Math. Acad. Sinica 11(1983), 309-328.
----, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40(1973), 563-564.
----, Total mean curvature of immersed surfaces in Em, Trans. Amer. Math. Soc. 218(1976), 333-341.
----, Total mean curvature and submanifolds of finite type, World Scientific (1984), Singapore.
S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds I and II, Amer. J. Math. 79(1957), 306-318; Michigan Math.J. 5(1958), 5-12.
N. H. Kuiper, Immersions with minimal total absolute curvature, Coll. de Geometric Differentielle Globale (Bruxelles, 1958), 75-88.
J. Milnor, Morse Theory, Princeton Univ. Press# 51 (1963).
Y. T. Shin, On the total curvature of immersions, Thesis Coll. Chungnam Univ. Natural Sciences 13(2) (1974), 7-18.
----, and Y. S. Pyo, A derivation of some spherical integral formulas, J. of Keimyung Math Sci. 6{1986), 1-8.
T. J. Willmore, Total curvature in Riemannian geometry, Clarendon (1982).