ON THE TOTAL CURVATURE OF SURFACES IMMERSED IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR

Main Article Content

YONG-SOO PYO
YONG-TAE SHIN

Abstract




ON THE TOTAL CURVATURE OF SURFACES IMMERSED
IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR




Article Details

How to Cite
PYO, Y.-S., & SHIN, Y.-T. (1991). ON THE TOTAL CURVATURE OF SURFACES IMMERSED IN EUCLIDEAN SPACES OF DIMENSION HIGHER THAN FOUR. Tamkang Journal of Mathematics, 22(2), 113–122. https://doi.org/10.5556/j.tkjm.22.1991.4581
Section
Papers

References

B. Y. Chen, On the total curvature of immersed manifolds I, II,_III, IV, V, and VI, Amer. J. Math. 93(1971), 148-162; Amer. J. Math. 94(1972), 799-809; Amer. J. Math. 95(1973), 636-642; Bull. Inst. Math. Acad. Sinica 7(1979); Bull. Inst. Matth, A cad. Sinica 9(1981); 509-516; Bull. Inst. Math. Acad. Sinica 11(1983), 309-328.

----, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40(1973), 563-564.

----, Total mean curvature of immersed surfaces in Em, Trans. Amer. Math. Soc. 218(1976), 333-341.

----, Total mean curvature and submanifolds of finite type, World Scientific (1984), Singapore.

S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds I and II, Amer. J. Math. 79(1957), 306-318; Michigan Math.J. 5(1958), 5-12.

N. H. Kuiper, Immersions with minimal total absolute curvature, Coll. de Geometric Differentielle Globale (Bruxelles, 1958), 75-88.

J. Milnor, Morse Theory, Princeton Univ. Press# 51 (1963).

Y. T. Shin, On the total curvature of immersions, Thesis Coll. Chungnam Univ. Natural Sciences 13(2) (1974), 7-18.

----, and Y. S. Pyo, A derivation of some spherical integral formulas, J. of Keimyung Math Sci. 6{1986), 1-8.

T. J. Willmore, Total curvature in Riemannian geometry, Clarendon (1982).