ON THE COMMUTATIVITY AND ANTICOMMUTATIVITY OF RINGS II
Main Article Content
Abstract
It is shown that if $R$ is any associative ring such that for each $x,y\in R$, there exist an even natural number $m(x,y)$ and an odd natural number $n(x,y)$, depending on $x$ and $y$, with either $[x,y]^{m(x,y)} = [x,y]^{n(x,y)}$ or $(x\circ y)^{m(x, y)} = (x \circ y)^{n(x,y)}$, then either $[x,y]$ or $(x \circ y)$ is nilpotent for all $x, y$ in $R$. Moreover, $R$ is commutative if $R$ has no nonzero nil right ideals.
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
I. N. Herstein, "A condition for the commutativity of rings", Canad. J. Math., 9, 583-586, 1957.
I. N. Herstein, "Noncommutative rings", Carus Mathematical Monographs, No. 15, Mathematical Association of America, Washington, DC, 1968.
D. Machale, "An anticommutativity consequence of a ring commutativity theorem of Herstein", Amer. Math. Monthly, 94, 162-165, 1987.
C. T. Yen, "On the commutativity and anticommutativity of rings", Chinese J. Math., 15, 231-235, 1987.