A NOTE ON SIMPLE EXTENSIONS AND SEMI-COMPACT TOPOLOGIES

Main Article Content

MAXIMILIAN GANSTER

Abstract




We study simple extensions of semi-compact topological spaces. Our main result says that if $X$ is an infinite set then maximal semi-compact topologies on $X$ do not exist.




Article Details

How to Cite
GANSTER, M. (1991). A NOTE ON SIMPLE EXTENSIONS AND SEMI-COMPACT TOPOLOGIES. Tamkang Journal of Mathematics, 22(4), 343–351. https://doi.org/10.5556/j.tkjm.22.1991.4623
Section
Papers

References

W. Janowski, "Some extrema.l problems for certain families of analytic functions I", Ann. Polon. Math. 28 (1973), pp. 297-326.

V. Karuna. Karan a.nd K. Padma, "Functions of bounded radius rotation", Indian J. Pure Appl. Math., 12 (1981), pp. 621-627.

E. M. Silvia, "Subclasses of close-to-convex functions", Int. J. Math. & Math. Sci. 6 (1983), pp. 449-458.

W. Kaplan, "Close-to-convex Schlicht functions", Mich. Math. J. 1 (1952), pp. 169-185.

K. I. Noor, "On a generalization of close-to-convexity", Int. J. Math. & Math. Sci. 6 (1983), pp.327-334.

R. Parvatham and T. N. Shanmugam, "On analytic functions with reference to an integral opera- tor", Bull. Austral. Math. Soc. 28 (1983), pp. 207-215.

R. J. Libera, "Some classes of regular univalent functions", Proc. Amer. Match. Soc. 16 (1965), pp. 755-758.

K. I. Noor, "On Some Univalent Integral Operators", J. Math. Anal. Appl. 128 (1987), pp. 586--592.

S. D. Bernacdi, "Convex and starlike univalout functions", Trans. Amer. Math. Soc. 135 (1969), pp. 429-446.