A NOTE ON FLAT MODULES OVER $f$-ALGEBRAS
Main Article Content
Abstract
Let $A$ be an Archimedean uniformly complete unital $f$-algebra.It is proved that the following conditions are equivalent: (1) $A$ is a Bezout ring; (2) $A$ is a PF-ring; (3) Every ideal of $A$ is flat; (4) Every submodule of a free $A$-module is flat. This extends a result by C. Neville on algebras of type $C(X)$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, 1972.
S. U. Chase, "Direct products of modules," Trans. Amer. Math. Soc. 97 (1960), 457-473.
S. Eilenberg, N. Steenrod, Foundations c,f algebraic -topology, Princeton Univ. Press, Princeton, New Jersey, 1952.
C. Faith, Algebra: rings, modules and categories I, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
L. Gillman, M. Henriksen, "Rings of continuous functions in which every finitely generated ideal is principal," Trans. Amer. Math. Soc. 82 (1956), 366-391.
C. B. Huijsmans, B. de Pagter, "Ideal theory in f -algebras," Trana. Amer. Math. Soc. 269 (1982), 225-245.
C. W. Neville, "Flat C(X)-modules and F-spaces," Math. Proc. Camb. Phil. Soc. 106 (1989), 237-244.
A. C. Zaanen, Riesz spaces II, North-Holland, Amsterdam, 1983.