EFFICIENCY OF A SEQUENTIAL DENSITY ESTIMATOR UNDER AUTOREGRESSIVE DEPENDENCE MODEL

Main Article Content

A. K. Hosni
M. M. El-Fahham

Abstract




Using kernel estimates of Yamato type the effect of dependent observations is studied. The mean integreated square error of the Fourier integral estimator is considered.




Article Details

How to Cite
Hosni, A. K., & El-Fahham, M. M. . (1990). EFFICIENCY OF A SEQUENTIAL DENSITY ESTIMATOR UNDER AUTOREGRESSIVE DEPENDENCE MODEL. Tamkang Journal of Mathematics, 21(3), 223–231. https://doi.org/10.5556/j.tkjm.21.1990.4666
Section
Papers

References

Deheuvel's, P. Estimation de la densite. Doctorat d'Etat, Universite Paris VI, (K), (1974).

Hart, J.D. Efficiency of kernel density estimator under an autoregressive dependence model. J. Amer. Stat. Ass. Vol Vol. 79,385, (1984), 110-117.

Menon, V.V., Prased, B. and Singh, R.S. Non-parametric recursive estimates of a probability density function and its derivatives. J. Stat. Planing and Inference. 9, (1983), 71-82.

Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. V. 33, 8, (1962), 1065-1076.

Prasad, B. and Singh, R.S. Nonparametric kemel estimates of a density function along with its derivatives. Colloquia Math. Soc. Janos, Bolyai, Nonparametric Stat. Inference Budapest, (1980).

Rosenblatt, M. Remarks on some nonparametric estimates of a density function, Ann. Math. Stat. 27, (1956), 832-837.

Wegman, E.J. and Davies, M.I. Remarks on some recursive estimators of probability density. Ann. of Stat., 7, (1979), 316-327.

Wolverton, C. and Wanger, T. Recursive estimatesof probability density. IEEE Trans. Syst. Sci. Cyberent, 5, (1969), 246-257.

Yamato, H. Sequential estimation of a continous probability density function and mode. Bulletin of Math. Stat., 14, (1971), 1-2.