THE SEQUENCE SPACE $\mathcal C(p)$ AND RELATED MATRIX TRANSFORMATIONS
Main Article Content
Abstract
In this paper we define the sequence space $\mathcal C(p)$ defined in an incomplete seminormed space $(X,g)$, namely
\[ \mathcal C(p) = \{(x_k) \subset X: \sup_{r\ge 1}g(x_k - x_{k+r})^{p_k}\to 0, k\to\infty \} \]
where $p =(p_k)$ is a sequence of positive numbers. Then we investigated some of its fundamental properties and some of related matrix transformations.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ö. Cakar, On matrix transformations of sequence spaces defined in an incomplete space, Comm. de la Fae. des Sc. de I 'Universitite d'Ankara, 22 A(l 973), 107-121.
C. G. Lascarides, A study of certain sequence spaces of Maddox a generalization of a theorem of I yer, Pacific J. Math. 38, (1971), 487-500.
I. J. Maddox, Spaces of strongly summable sequences, Quaterly J. Math. Oxford, (2), 18, (1967), 345-355.
I. J. Maddox, Paranormed sequence spaces generated by infiinite matrices, Proc. Camb. Phil. Soc., 64, (1968), 335-340.
I. J. Maddox, Matrix transformations in an incomplete spaces, Canadian J. Math., 20, (1968), 727-734.
M. Stiegliti, Matrix transformationen von unvollstandigen Folgenraumen Math. Z., 133, (1973), 129-132.