THE SEQUENCE SPACE $\mathcal C(p)$ AND RELATED MATRIX TRANSFORMATIONS
DOI:
https://doi.org/10.5556/j.tkjm.21.1990.4668Keywords:
Sequence space, Matrix transformations, Incomplete space, Kothe- Toeplitz dualAbstract
In this paper we define the sequence space $\mathcal C(p)$ defined in an incomplete seminormed space $(X,g)$, namely
\[ \mathcal C(p) = \{(x_k) \subset X: \sup_{r\ge 1}g(x_k - x_{k+r})^{p_k}\to 0, k\to\infty \} \]
where $p =(p_k)$ is a sequence of positive numbers. Then we investigated some of its fundamental properties and some of related matrix transformations.
References
Ö. Cakar, On matrix transformations of sequence spaces defined in an incomplete space, Comm. de la Fae. des Sc. de I 'Universitite d'Ankara, 22 A(l 973), 107-121.
C. G. Lascarides, A study of certain sequence spaces of Maddox a generalization of a theorem of I yer, Pacific J. Math. 38, (1971), 487-500.
I. J. Maddox, Spaces of strongly summable sequences, Quaterly J. Math. Oxford, (2), 18, (1967), 345-355.
I. J. Maddox, Paranormed sequence spaces generated by infiinite matrices, Proc. Camb. Phil. Soc., 64, (1968), 335-340.
I. J. Maddox, Matrix transformations in an incomplete spaces, Canadian J. Math., 20, (1968), 727-734.
M. Stiegliti, Matrix transformationen von unvollstandigen Folgenraumen Math. Z., 133, (1973), 129-132.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.