A GENERALIZATION OF SOME COMMUTATIVITY THEOREMS FOR RINGS I
Main Article Content
Abstract
In this paper we generalize some well-known commutativity theorems for rings as follows: Let $m > 1$, and $n$, $k$ be non-negative integers. Let $R$ be an $s$ - unital ring satisfying the polynomial identity $[x^ny- y^mx^k, x]=0$, for all $x,y\in R$. Then $R$ is commutative.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
H. Abu-Khuzam, H. Tominaga and A. Yaqub, Commutativity Theorems for s-unital rings satisfying polynomial identities, Math. J. Okayama Univ., 22, (1980), 111-114.
H. E. Bell, On some commutativity theorems of Herstein, Arch. Math., 24, (1973), 34-38.
H. E. Bell, Some commutativity results for rings with two variable constraints, Proc. Amer. Math. Soc., 53, (1975), 280-285.
H. E. Bell, A conunutativity condition for rings, Canad. J. Math., 28, (1976), 986-991.
I. N. Herstein, A generalization of a theorem of Jacobson, Amer. J. Math., 73, (1951), 756-762.
Y. Hirano, Y. Kobayashi and H. Tominaga, Some Polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ., 24, (1982), 7-13.
H. Komatsu, A commutativity theorem for rings, Math. J. Okayama Univ., 26, (1984), 109-111.
W. K. Nicholson and A. Yaqub, A commutativity theorem for rings and groups, Canad. Math. Bull., 22, (1979), 419-423.
W. K. Nicholson and A. Yaqub, A Commutativity theorem, Algebra Universalis, 10, (1980), 260- 263.
E. Psomopoulos, A commutativity theorem for rings, Math. Japon., 29 No.3 (1984), 371-373.
E. Psomopoulos, Commutativity theorems for rings and groups with constraints on commutators, lnternat. J. Math. and Math. Sci., Vol. 7 No.3 (1984), 513-517.
E. Psomopoulos, H. Tominaga and A. Yaqub, Some commutativity theorems for n-torsion free rings, Math. J. Okayama Univ., 23, (1981), 37-39.
M. A. Quadri and M. A. Khan, A commutativity theorem for left s-unital rings, Bull. Inst. Math. Acad. Sinica 15, (1987), 323-327.
M. A. Quadri and M. A. Khan, A commutativity theorem for associative ring, Math. Japon., 33 No. 2 (1988), 275-279.
H. Tominaga and A. Yaqub, Some commutativity properties for rings II, Math. J. Okayama Univ., 25, (1983), 173-179.
H. Tominaga and A. Yaqub, A commutativity theorem for one - sided s-unital rings, Math. J. Okayama Univ., 26, (1984), 125-128.