NEW ANALYSIS OF WITTAKER FUNCTIONS
Main Article Content
Abstract
Integrals involving products of two Whittaker functions and Bessel functions are evaluated in §§ 3,4. Also the integrals
\[ \int_0^\infty t^{\rho-1}W_{k_1m}(t)W_{-k_1m}(t)W_{\mu, \nu}\left(\frac{2iz}{t}\right)W_{\mu, \nu}\left(-\frac{2iz}{t}\right)\ dt\]
and
\[ \int_0^\infty t^{\rho-1}W_{k_1m}(t)W_{-k_1m}(t)W_{\mu, \nu}(2zt)W_{-\mu, \nu}(2zt)\ dt\]
are evaluated in § 5 while in § 6 integrals involving the product of three Whittaker functions are established.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
T. M. MacRobert , "Functions of a Complex Variable" 4th edit. London (1954).
F. M. Ragab, Journal of the London Mathematical Society 37 (1962).
----, "Some formulae for the product of two Whittaker Functions", I( onimble Akademie Van Wetenschappen, Amsterdam Vol. (58), pp. 430-434, (1958).
F. M. Ragab , "Integrals involving products of Bessel functions", Annafi di Matematica V. LVI, pp. 301-312, (1961).
T. M. MacRobert, "Moltiplication formulae for the E functions", Pacifie journal of Math. Vol. 9, pp. 759-761, (1959).
F. M. Ragab, Proc. Glay, Math. Assoc. II, (1954).
T. M. MacRobert, Philos Magan Ser. 7. XXXI (1941).
F. M. Ragab, Proc. Glag. Math. Assoc i, (1951).
----, Proc. Glasgow. Math Assoc. II (1953).
----, Proc. Glasgow, Math. Ass. IL (1954).