Lack of symmetry in linear determinacy due to convective effects in reaction-diffusion-convection problems
Main Article Content
Abstract
Article Details
References
A. Al-Kiffai, The role of convection on spreading speeds and linear determinacy for reaction-diffusion-convection systems, PhD Thesis, Swansea University, submitted.
R. D. Benguria, M. C. Depassier and V. Mendez, Speed of travelling waves in reaction-diffusion equations, Phys. Rev. E, 3(2001), 109-110.
R. D. Benguria, M. C. Depassier and V. Mendez, Minimal speed of fronts of reaction-convection-diffusion equations, Phys. Rev. E, 69 (2004), 031106, p 7.
C. Castillo-Chavez, B. Li, and H. Wang, Some recent developments on linear determinacy, Math. Biosci. Eng., 10(2013), 1419-1436.
E. C. M. Crooks, Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Advances in Differential Equations, 8(2003), No.3, 279-314.
R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7(1937), 355-369.
B. H. Gilding and R. Kersner, Travelling waves in nonlinear diffusion-convection-reaction}, Progress in Nonlinear Differential Equations and their Applications, 60, Birkhauser Verlag, Basel, (2004).
K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2(1975), 251-263.
E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30(1971), 225-234.
A. N. Kolmogorov, I. Petrowskii, N. Piscounov, Etude de lequation de la diffusion avec croissance de la quantitede matiere et son application a un probleme biologique, Moscow Univ. Math. Bull., 1 (1937), 1-25.
B. Li, H. F. Weinberger, M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems}, Mathematical Biosciences, 196(2005), 82-98.
X. Liang and X. Zhao, Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math.,60(2007), 1-40.
M. Lucia, C. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Comm. Pure Appl. Math., 57(2004), 616-636.
R. Lui, Biological growth and spread modeled by systems of recursions, I Mathematical theory, Mathematical Bioscience, 93(1989), 269-295.
L. Malaguti and C. Marcelli, Travelling wave fronts in reaction-diffusion equation with convection effects and non-regular terms, Math., Nach., 242(2002), 148-164.
J. D. Murray, Mathematical biology, 2nd, corrected edition, Biomathematics Texts, 19(1989).
A. H. Roger and R. J. Charles, Matrix Analysis, Cambridge University Press, 2nd Edition, 2013.
E. Seneta Non-negative Matrices, an Introduction to Theory and Applications, George Allen and Unwin Ltd, London, 1973.
A. I. Volpert and V. A. Volpert, Traveling-wave Solutions of Parabolic Systems, vol:140 of Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 1994.
H. Weinberger, On sufficient condition for a linearly determinate spreading speed, Discrete Cont. Dyn. Syst. B, 17(2012), 2267-2280.
H. F. Weinberger, M. A. Lewis, B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45(2002), 183-218.