Variational approach to impulsive Neumann problems with variable exponents and two parameters

Main Article Content

Arezoo Solimaninia
G. A. Afrouzi
Hadi Haghshenas

Abstract

Based on the variational methods and critical-point theory, we are concerned with the existence results for a second-order impulsive boundary value problem involving an ordinary differential equation with $p(x)$-Laplacian operator, and Neumann conditions.

Article Details

How to Cite
Solimaninia, A., Afrouzi, G. A., & Haghshenas, H. (2024). Variational approach to impulsive Neumann problems with variable exponents and two parameters. Tamkang Journal of Mathematics, 55(3), 203–221. https://doi.org/10.5556/j.tkjm.55.2024.5134
Section
Papers

References

G.A. Afrouzi, S. Heidarkhani, Three solutions for a quasilinear boundary value problem,

Nonlinear Anal. TMA 69 (2008) 3330-3336.

G. A. Afrouzi, A. Hadjian, V. D. Radulescu, Variational approach to fourth-order impulsive

differential equations with two control parameters, Results Math., 65 (3-4) (2014), 371-384.

R.P. Agarwal, H.B. Thompson, C.C. Tisdell, On the existence of multiple solutions to bound

ary value problems for second order ordinary differential equations, Dynam. Systems Appl.

(2007) 595-609.

D. Averna, G. Bonanno, A mountain pass theorem for a suitable class of functions, Rocky

Mountain J. Math. 39 (2009) 707-727.

D. Averna, G. Bonanno, A three critical points theorem and its applications to the ordinary

Dirichlet problem, Topol. Meth. Nonl. Anal. 22 (2003) 93-103.

D. Averna, G. Bonanno, Three solutions for quasilinear two-point boundary value problem

involving the one-dimensional p-Laplacian, Proc. Edinb. Math. Soc. 47 (2004) 257-270.

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal.

TMA 75 (2012) 2992-3007.

G. Bonanno, S. Heidarkhani, D. O’Regan, Nontrivial solutions for Sturm-Liouville systems

via a local minimum theorem for functionals, Bull. Aust. Math. Soc. 89 (2014) 8-18.

G. Bonanno, A. Sciammetta, An existence result of one non-trivial solution for two point

boundary value problems, Bull. Aust. Math. Soc. 84 (2011) 288-299.

G. Bonanno, P. F. Pizzimenti, Existence results for nonlinear elliptic problems, Appl. Anal.

(2013) 411-423.

G. Bonanno, P. F. Pizzimenti, Neumann boundary value problems with not coercive potential,

Mediterr. J. Math. 9 (2012) 601-609.

G. Bonanno, A. Chinni, Discontinuous elliptic problems involving the p(x)-Laplacian, Math.

Nachr. 284 (2011) 639-652.

G. Bonanno, A. Chinni, Multiple solutions for elliptic problems involving the p(x)-Laplacian,

Le Matematiche, LXVI-Fasc. 1 (2011) 105-113.

G. Bonanno, G. D,Agui, A. Sciammetta, One-dimensional nonlinear boundary value problems

with variable exponent, Discrete Contin. Dyn. Syst. Ser. S 11 (2018) 179-191.

H. Br´ezis, Analyse Fonctionnelle: Theorie Et Applications, Masson, Paris, 1983.