Some inequalities for the numerical radius and spectral norm for operators in Hilbert $C^{\ast}$-modules space

Main Article Content

Mohammad M.H Rashid

Abstract

In this paper, a fresh approach to investigating the numerical radius of bounded operators on Hilbert $C^*$-modules is presented. By using our approach, we can produce some novel findings and extend certain established theorems for bounded adjointable operators on Hilbert $C^*$-module spaces. Moreover, we find an upper bound for power of the numerical radius of $t^{\alpha}ys^{1-\alpha}$
under assumption $0\leq \alpha\leq 1$. In fact, we prove
$$w_c\left(t^{\alpha}ys^{1-\alpha}\right)\leq{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert y \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^r{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \alpha t^{r}+(1-\alpha)s^{r}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}$$
for all $0\leq \alpha\leq 1$ and $r \geq 2$.

Article Details

How to Cite
Rashid, M. M. (2024). Some inequalities for the numerical radius and spectral norm for operators in Hilbert $C^{\ast}$-modules space. Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.56.2025.5167
Section
Papers
Author Biography

Mohammad M.H Rashid, University

Mathematics/Prof.Dr

References

bibitem{Drag1}

S.S. Dragomir, Some refinements of Schwarz inequality, Simposional de Math. Si Appl.

Polytechnical Inst. Timisoara, Romania, textbf{1-2 }(1985), 13--16.

%==========================================================================

bibitem{Halmos}

P.R. Halmos, A Hilbert space problem book, Springer Verlag, New York, 1982.

%=============================================================================

bibitem{Hardy}

G. H. Hardy and J. E. Littlewood, and G. P'olya, Inequalities, 2nd ed., Cambridge Univ.

Press, Cambridge, 1988.

%========================================================================

bibitem{Kap}

I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. textbf{75} (1953), 839--858.

%============================================================================

bibitem{Kit1}

F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst.

Math. Sci. textbf{24} (1988), 283--293.

%=================================================================

bibitem{Kit2}

F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. textbf{143 }(1997), 337--348.

%==========================================================================

bibitem{KMS}

R. Kaur, M. S. Moslehian, M. Singh and C. Conde, Further refinements of the Heinz

inequality, Linear Algebra Appl. textbf{447} (2014), 26--37.

%===========================11111========================================================

bibitem{Lance}

E. C. Lance, Hilbert $C^*$-module: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge, 1995.

%=================================================================

%============================================================

bibitem{PFMHS}

J.Pemcari'sc, T. Furuta, J. Mi'sci'sc Hot, and Y. Seo, Mondpencari'ec method in

operator inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert

Space, Element, Zagreb, 2005.

%=========================================================================

bibitem{MAO}

M. Mehrazin, M. Amyari and M. E. Omidvar, A new type of numerical radius of operators on Hilbert

$C^*$-module,Rendiconti del Circolo Matematico di Palermo Series 2 textbf{69} (2020), 29--37.

%===================================================================

bibitem{Mog}

S. F. Moghaddam, Numerical radius inequalities for Hilbert $C^*$-modules, Mathematica Bohemica textbf{147}~(4) (2022), 547--566.

%===========================================================================

bibitem{Reid}

W. Reid, Symmetrizable completely continuous linear tarnsformations in Hilbert

space, Duke Math.textbf{18} (1951), 41--56.

%==========================================================================