Some inequalities for the numerical radius and spectral norm for operators in Hilbert $C^{\ast}$-modules space

Main Article Content

Mohammad M.H Rashid


In this paper, a fresh approach to investigating the numerical radius of bounded operators on Hilbert $C^*$-modules is presented. By using our approach, we can produce some novel findings and extend certain established theorems for bounded adjointable operators on Hilbert $C^*$-module spaces. Moreover, we find an upper bound for power of the numerical radius of $t^{\alpha}ys^{1-\alpha}$
under assumption $0\leq \alpha\leq 1$. In fact, we prove
$$w_c\left(t^{\alpha}ys^{1-\alpha}\right)\leq{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert y \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^r{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \alpha t^{r}+(1-\alpha)s^{r}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}$$
for all $0\leq \alpha\leq 1$ and $r \geq 2$.

Article Details

How to Cite
Rashid, M. M. (2024). Some inequalities for the numerical radius and spectral norm for operators in Hilbert $C^{\ast}$-modules space. Tamkang Journal of Mathematics.
Author Biography

Mohammad M.H Rashid, University




S.S. Dragomir, Some refinements of Schwarz inequality, Simposional de Math. Si Appl.

Polytechnical Inst. Timisoara, Romania, textbf{1-2 }(1985), 13--16.



P.R. Halmos, A Hilbert space problem book, Springer Verlag, New York, 1982.



G. H. Hardy and J. E. Littlewood, and G. P'olya, Inequalities, 2nd ed., Cambridge Univ.

Press, Cambridge, 1988.



I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. textbf{75} (1953), 839--858.



F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst.

Math. Sci. textbf{24} (1988), 283--293.



F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. textbf{143 }(1997), 337--348.



R. Kaur, M. S. Moslehian, M. Singh and C. Conde, Further refinements of the Heinz

inequality, Linear Algebra Appl. textbf{447} (2014), 26--37.



E. C. Lance, Hilbert $C^*$-module: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge, 1995.




J.Pemcari'sc, T. Furuta, J. Mi'sci'sc Hot, and Y. Seo, Mondpencari'ec method in

operator inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert

Space, Element, Zagreb, 2005.



M. Mehrazin, M. Amyari and M. E. Omidvar, A new type of numerical radius of operators on Hilbert

$C^*$-module,Rendiconti del Circolo Matematico di Palermo Series 2 textbf{69} (2020), 29--37.



S. F. Moghaddam, Numerical radius inequalities for Hilbert $C^*$-modules, Mathematica Bohemica textbf{147}~(4) (2022), 547--566.



W. Reid, Symmetrizable completely continuous linear tarnsformations in Hilbert

space, Duke Math.textbf{18} (1951), 41--56.