Some inequalities for the numerical radius and spectral norm for operators in Hilbert $C^{\ast}$-modules space
Main Article Content
Abstract
In this paper, a fresh approach to investigating the numerical radius of bounded operators on Hilbert $C^*$-modules is presented. By using our approach, we can produce some novel findings and extend certain established theorems for bounded adjointable operators on Hilbert $C^*$-module spaces. Moreover, we find an upper bound for power of the numerical radius of $t^{\alpha}ys^{1-\alpha}$
under assumption $0\leq \alpha\leq 1$. In fact, we prove
$$w_c\left(t^{\alpha}ys^{1-\alpha}\right)\leq{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert y \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^r{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \alpha t^{r}+(1-\alpha)s^{r}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}$$
for all $0\leq \alpha\leq 1$ and $r \geq 2$.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
bibitem{Drag1}
S.S. Dragomir, Some refinements of Schwarz inequality, Simposional de Math. Si Appl.
Polytechnical Inst. Timisoara, Romania, textbf{1-2 }(1985), 13--16.
%==========================================================================
bibitem{Halmos}
P.R. Halmos, A Hilbert space problem book, Springer Verlag, New York, 1982.
%=============================================================================
bibitem{Hardy}
G. H. Hardy and J. E. Littlewood, and G. P'olya, Inequalities, 2nd ed., Cambridge Univ.
Press, Cambridge, 1988.
%========================================================================
bibitem{Kap}
I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. textbf{75} (1953), 839--858.
%============================================================================
bibitem{Kit1}
F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst.
Math. Sci. textbf{24} (1988), 283--293.
%=================================================================
bibitem{Kit2}
F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. textbf{143 }(1997), 337--348.
%==========================================================================
bibitem{KMS}
R. Kaur, M. S. Moslehian, M. Singh and C. Conde, Further refinements of the Heinz
inequality, Linear Algebra Appl. textbf{447} (2014), 26--37.
%===========================11111========================================================
bibitem{Lance}
E. C. Lance, Hilbert $C^*$-module: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge, 1995.
%=================================================================
%============================================================
bibitem{PFMHS}
J.Pemcari'sc, T. Furuta, J. Mi'sci'sc Hot, and Y. Seo, Mondpencari'ec method in
operator inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert
Space, Element, Zagreb, 2005.
%=========================================================================
bibitem{MAO}
M. Mehrazin, M. Amyari and M. E. Omidvar, A new type of numerical radius of operators on Hilbert
$C^*$-module,Rendiconti del Circolo Matematico di Palermo Series 2 textbf{69} (2020), 29--37.
%===================================================================
bibitem{Mog}
S. F. Moghaddam, Numerical radius inequalities for Hilbert $C^*$-modules, Mathematica Bohemica textbf{147}~(4) (2022), 547--566.
%===========================================================================
bibitem{Reid}
W. Reid, Symmetrizable completely continuous linear tarnsformations in Hilbert
space, Duke Math.textbf{18} (1951), 41--56.
%==========================================================================