Hankel determinant for certain class of analytic function defined by generalized derivative operator
Main Article Content
Abstract
The authors in \cite{mam1} have recently introduced a new generalised derivatives operator $ \mu_{\lambda _1 ,\lambda _2 }^{n,m},$ which generalised many well-known operators studied earlier by many different authors. By making use of the generalised derivative operator $\mu_{\lambda
_1 ,\lambda _2 }^{n,m}$, the authors derive the class of function denoted by $ \mathcal{H}_{\lambda _1 ,\lambda _2 }^{n,m}$, which contain normalised analytic univalent functions $f$ defined on the open unit disc $U=\left\{{z\,\in\mathbb{C}:\,\left| z \right|\,<\,1} \right\}$ and satisfy \begin{equation*}
{\mathop{\rm Re}\nolimits} \left( {\mu _{\lambda _1 ,\lambda _2 }^{n,m} f(z)} \right)^\prime > 0,\,\,\,\,\,\,\,\,\,(z \in U).
\end{equation*}
This paper focuses on attaining sharp upper bound for the functional $\left| {a_2 a_4 - a_3^2 } \right|$ for functions $f(z)=z+ \sum\limits_{k = 2}^\infty {a_k \,z^k }$ belonging to the class $\mathcal{H}_{\lambda _1 ,\lambda _2 }^{n,m}$.
Article Details
References
M. H. Al-Abbadi and M. Darus, Differential subordination for new generalised derivative operator, Acta. Univ. Apul., 20(2009), 265--280.
F. M. Al-Oboudi, On univalent functions defined by a generalised Salagean Operator, Int. J. Math. Math. Sci., 27(2004), 1429--1436.
K. Al-Shaqsi and M. Darus, Differential Subordination with generalised derivative operator, Int. J. Comp. Math. Sci, 2(2), (2008), 75--78.
K. Al-Shaqsi and M. Darus, On univalent functions with respect to $k$-symmetric points defined by a generalised Ruscheweyh derivative operator, Journal of Analysis and Application, 7(1), (2009), 53--61.
K. Al-Shaqsi, M. Darus and O. A. Fadipe-Joseph, A new subclass of Salagean-type harmonic univalent functions, Abstract and Applied Analysis, vol. 2010 (2010), Article ID 821531, 12 pages. doi:10.1155/2010/821531.
R. Ehrenborg, The Hankel determinant of exponential polynomials, American Mathematical Monthly, 107(2000), 557--560.
M. Fekete and G. Szego, Eine bemerkunguber ungerade schlichte functionen, J. Lond. Math. Soc., 8(1933), 85--89.
J. Hummel, Extremal problems in the class of starlike functions, Proc. Amer. Math. Soc., 11(1960), 741--749.
J. Hummel, The coefficient regions of starlike functions, Pacific J. Math., 7(1957), 1381--1389.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8--12.
J. W. Layman, The Hankel transform and some of its properties, J, Integer Sequences, 4(2001), 1--11.
R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $P$, Proc. Amer. Math. Soc., 87(2)(1983), 251--289.
R. J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.
T. H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532--537.
J. W. Noonan and D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223(2) (1976), 337--346
K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(8)(1983), 731--739.
CH. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
St. Ruscheweyh, ew criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109--115.
G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1013(1983), 362--372.
O. Al-Refai and M. Darus, Second Hankel determinant for a class of analytic functions defined by a fractional operator, it European Journal of Scientific Research, 28(2)(2009), 234--241.
F. Al-Kasasbeh and M. Darus, New subclass of analytic functions with some applications, European Journal of Scientific Research, 28(1) (2009), 124--131.
A. Mohammed, M.Darus and D. Breaz, Fractional calculus for certain integral operator involving logarithmic coefficients, J. Math. Stat., 5(2) (2009), 118--122.
R. W. Ibrahim and M. Darus, Operator defined by convolution with Zeta functions, it Far East J. Math Sci., 40(1)(2010), 93--105.