An orthogonal class of $p$-Legendre polynomials on variable interval

Main Article Content

Nidhi R. joshi
B. I. Dave Dave

Abstract

The work incorporates a generalization of the Legendre polynomial by introducing a parameter $p>0$ in its generating function. The coefficients thus generated, constitute a class of the polynomials which are termed as the $p$-Legendre polynomials. It is shown that this class turns out to be orthogonal with respect to the weight function: $(1-\sqrt{p}\ x)^{\frac{p+1}{2p}-1}(1+\sqrt{p}\ x)^{\frac{p+1}{2p}-1}$ over the interval $(-\frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p}}).$ Among the other properties derived, include the Rodrigues formula, normalization, recurrence relation and zeros. A graphic depiction for $p=0.5, 1, 2,$ and $3$ is shown. The $p$-Legendre polynomials are used to estimate a function using the least squares approach. The approximations are graphically depicted for $p=0.7, 1, 2.$

Article Details

How to Cite
Joshi, N. R., & Dave, B. I. D. (2024). An orthogonal class of $p$-Legendre polynomials on variable interval . Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.56.2025.5222
Section
Papers
Author Biography

Nidhi R. joshi, Parul University

Assistant Professor,

Department of Applied Science and Humanities,

Parul University,

Limda,

Vadodra-391760,  India

References

bibitem{saeed}

newblock S. Ahmed,

newblock Some integrals involving k gamma and k digamma function,

newblock Journal of the Egyptian Mathematical Society, textbf{28} (2020), Article number: 39.

bibitem{ali1}

newblock I. Ali and S. U. Khan,

newblock Threshold of Stochastic SIRS Epidemic Model from Infectious to Susceptible Class with Saturated Incidence Rate Using Spectral Method, Symmetry, textbf{14} (2022), 1--15.

bibitem{ali}

newblock I. Ali and M. T. Saleem,

newblock Applications of Orthogonal Polynomials in Simulations of Mass Transfer Diffusion Equation Arising in Food Engineering, Symmetry, 527 (2023), 1--15.

newblock doi: https://doi.org/10.3390/sym15020527

bibitem{anli}

newblock F. Anli and S. Gungor,

newblock Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry,

newblock Applied Mathematical Modelling,

textbf{31} Issue 4 (2007), 727--733.

bibitem{weber}

newblock G. B. Arfken and H. J. Weber,

newblock Mathematical methods for Physicists,

newblock 6$^{th}$ edition, Elsevier Academic Press, London, 2005.

bibitem{ayd}

newblock M. Aydin and N. I. Mahmudov,

newblock Study of the $varphi$-generalized type $k$-fractional integrals or derivatives and some of their properties,

newblock Turk J. Math., textbf{46} (2022), 1384 -- 1386. doi:10.3906/mat-2110-51

bibitem{bala}

newblock I. B. Bapna and R. S. Prajapat,

newblock Some applications of extension k-Gamma, k-Beta functions and k-Beta distribution,

newblock J. of Ramanujan Society of Mathematics and Mathematical Sciences, textbf{7}, No. 2 (2020), 83--98.

bibitem{bur}

newblock R. L. Burden and J. D. Faires,

newblock Numerical Analysis, Brooks/Cole, Cengage Learning, USA, 2011.

bibitem{deli}

newblock P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D.

Morrison, E. Witten,

newblock Quantum fields and strings: A course for mathematicians, American Mathematical Society, 1999.

bibitem{epari}

newblock R. Diaz, E. Pariguan,

newblock Symmetric quantum Weyl algebras,

newblock Annales Mathematiques Blaise Pascal, textbf{11} (2004), 187--203.

bibitem{pari}

newblock R. Diaz, E. Pariguan,

newblock Quantum symmetric functions, Communications in Algebra, textbf{6}(33)(2005), 1947--1978.

bibitem{diaz}

newblock R. Diaz and E. Pariguan,

newblock On hypergeometric function and Pochhammer k-symbol,

newblock Divulgaciones Mathematicas, textbf{15} (2007), 179--192.

bibitem{dimi}

newblock D. Dryanov and Q. I. Rahman,

newblock On Certain Mean Values of Polynomials on the Unit Interval,

newblock Journal of Approximation Theory, textbf{101} (1999), 92 -- 120.

bibitem{gaut}

newblock W. Gautschi,

newblock Orthogonal polynomials: Applications and Computation,

newblock Acta Numerica, (1996), 45--119.

bibitem{gupta}

newblock A. Gupta and C.L. Parihar,

newblock Siago’s K-Fractional Calculus Operators,

newblock Malaya J. Mat., textbf{5} (3) (2017), 494--504.

bibitem{meh}

newblock M. E. H. Ismail and R. Zhang,

newblock A review of multivariate orthogonal polynomials,

newblock Journal of the Egyptian Mathematical Society, textbf{25} (2017), 91--110.

bibitem{joshi}

newblock N. R. Joshi and B. I. Dave,

newblock Orthogonality and other properties of a p-deformed Jacobi polynomial,

newblock The Mathematics Student, textbf{92}, Nos. 3-4, (2023), 187--202.

bibitem{ghazi}

newblock G. S. Khammash, P. Agarwal and J. Choi,

newblock Extended k-Gamma and k-Beta Functions of Matrix Arguments,

newblock Mathematics textbf{8} (2020), Article No. 1715; doi:10.3390

bibitem{collo}

newblock S. U. Khan and I. Ali,

newblock Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation,

newblock AIP Advances, textbf{8} No. 3 (2018), 1--10.

bibitem{sami}

newblock S. U. Khan and I. Ali,

newblock Convergence and error analysis of a spectral collocation method for solving system of nonlinear Fredholm integral equations of second kind,

newblock Computational and Applied Mathematics, textbf{38} 125, (2019).

bibitem{dyn}

newblock W. S. Koon, M. W. Lo, J. E. Marsden and S. D. Ross,

newblock Dynamical Systems, the Three-Body Problem and Space Mission Design, 2011.

bibitem{mgt} M. Mignotte and D. c{S}tefv{a}nescu,

newblock Polynomials: An Algorithmic Approach, Springer, 1999.

bibitem{gradimir}

newblock G. V. Milovanovic,

newblock Inner product spaces and applications: Orthogonal polynomial systems and some applications, Longman Publisher, 1997.

bibitem{naz}

newblock N. Nazeer, M. I. Asjad, M. K. Azam, and A. Akg"{u}l,

newblock Study of Results of Katugampola Fractional Derivative and Chebyshev Inequailities,

newblock Int. J. Appl. Comput. Math., textbf{8} (2022), 225. doi: 10.1007/s40819-022-01426-x

bibitem{volt}

newblock M. O. Olayiwola, A.F. Adebisi and Y.S. Arowolo,

newblock Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method,

newblock Çankaya University Journal of Science and Engineering,

textbf{17} (2020), 041--051.

bibitem{edr}

newblock E. D. Rainville,

newblock Special Functions,

newblock Macmillan Co., New York, 1960.

bibitem{rvbijims19}

newblock R. V. Savalia and B. I. Dave,

newblock A General Inversion pair and $p$-deformation of Askey Scheme,

newblock The Journal of the Indian Math. Soc., textbf{86} (2019), 1--19.

bibitem{rvsphd}

newblock R. V. Savalia,

newblock A system of p-polynomials and its $q$-analogue, The thesis submitted to the Maharaja Sayajirao University of Baroda, 2019.

bibitem{sea}

newblock James B. Seaborn,

newblock Hypergeometric Functions and Their Applications,

newblock First edition, Springer Science+Business Media, LLC, 1991.

bibitem{hms}

newblock H. M. Srivastava and J. P. Singhal,

newblock A class of polynomials defined by generalized Rodrigues’ formula,

newblock Annali di Matematica Pura ed Applicata, textbf{90} (1971), 75–-85.