The adjoint map of Euclidean plane curves and curvature problems

Main Article Content

Mircea Crasmareanu

Abstract

The adjoint map of a pair of naturally parametrized curves in the Euclidean plane is studied from the point of view of the curvature. A main interest is when the given curve and its adjoint curve share the same natural parameter and the same curvature. For the general linear second order differential equation we introduce a function expressing the deformation of curvatures induced by the adjoint map.

Article Details

How to Cite
Crasmareanu, M. (2024). The adjoint map of Euclidean plane curves and curvature problems. Tamkang Journal of Mathematics, 55(4), 331–337. https://doi.org/10.5556/j.tkjm.55.2024.5224
Section
Papers

References

bibitem{a:ss} H. Alencar, W. Santos and G. Neto Silva, Differential geometry of plane curves, American Mathematical Society, 2022. Zbl 1511.53001

bibitem{c:cg} O. Calin, D.-C. Chang and P. Greiner, Geometric analysis on the Heisenberg group and its ge-ne-ra-li-za-tions, American Mathematical Society, 2007. Zbl 1132.53001

bibitem{c:m1} M. Crasmareanu, Adjoint variables: A common way to first integrals and inverse problems, Mem. Differ. Equ. Math. Phys., textbf{26} (2002), 55--64. Zbl 1018.34008

bibitem{c:m2} M. Crasmareanu, Higher order curvatures of plane and space parametrized curves, Algorithms, textbf{15} (2022), no. 11, paper no. 436, https://doi.org/10.3390/a15110436.

bibitem{c:e} M. Crasmareanu and V. Enache, A note on dynamical systems satisfying the W"unschmann-type condition, Intern. J. of the Physical Sciences, textbf{7} (2012), no. 42, 5654--5663.

bibitem{o:p} P. J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, 1995. Zbl 0837.58001