A fitted parameter convergent finite difference scheme for two-parameter singularly perturbed parabolic differential equations
Main Article Content
Abstract
The objective of this paper is to develop a numerical scheme that is uniform in its parameters for a specific type of time-dependent parabolic problem with two perturbation parameters. The existence of these two parameters in the terms with the highest-order derivatives results in the formation of boundary layer(s) in the solution of such problems. Solving these model problems using classical methods does not yield satisfactory results due to the layer behavior. Therefore, nonstandard finite difference schemes have been developed as a means to obtain numerical solutions for these problems. To develop the scheme, we employ the Crank-Nicolson
discretization on a uniform time mesh and apply a fitted operator method with a uniform spatial mesh. We have established the stability and convergence of the proposed scheme. The proposed scheme exhibits uniform convergence of second order in the temporal direction and first order in the spatial direction. However, temporal mesh refinements is employed to enhance the order to two in both directions. Model examples are provided to validate the practicality of the proposed numerical scheme.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
K. Bansal, P. Rai, and K. K. Sharma. Numerical treatment for the class of time dependent
singularly perturbed parabolic problems with general shift arguments. Differ., 25(2):327–
, 2017.
P. Chakravarthy and R. N. Rao. A modified numerov method for solving singularly perturbed
differential–difference equations arising in science and engineering. Results Phys., 2:100–103,
P. Das. Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear
parameterized problems. J. computational applied mathematics, 290:16–25, 2015.
P. Das and V. Mehrmann. Numerical solution of singularly perturbed convection-diffusionreaction
problems with two small parameters. BIT Numer. Math., 56(1):51–76, 2016.
P. Das and S. Natesan. Higher-order parameter uniform convergent schemes for robin
type reaction-diffusion problems using adaptively generated grid. Int. J. Comput. Methods,
(04):1250052, 2012.
P. Das and S. Natesan. Richardson extrapolation method for singularly perturbed
convection-diffusion problems on adaptively generated mesh. Comput. Model. Eng. Sci.,
:463–85, 2013.
P. Das and S. Natesan. Adaptive mesh generation for singularly perturbed fourth-order
ordinary differential equations. Int. J. Comput. Math., 92(3):562–578, 2015.
M. Dehghan. Numerical solution of the three-dimensional advection–diffusion equation.
Appl. Math. Comput., 150(1):5–19, 2004.
E. P. Doolan, J. J. Miller, and W. H. Schilders. Uniform numerical methods for problems
with initial and boundary layers. Boole Press, 1980.
Gracia, E. O’Riordan, and M. Pickett. A parameter robust second order numerical method
for a singularly perturbed two-parameter problem. Appl. Numer. Math., 56(7):962–980,
V. Gupta, M. K. Kadalbajoo, and R. K. Dubey. A parameter-uniform higher order finite
difference scheme for singularly perturbed time-dependent parabolic problem with two small
parameters. Int., 96(3):474–499, 2019.
M. K. Kadalbajoo and V. Gupta. Numerical solution of singularly perturbed convection–
diffusion problem using parameter uniform b-spline collocation method. Journal of Mathematical
Analysis and Applications, 355(1):439–452, 2009.
M. K. Kadalbajoo and A. Jha. Exponentially fitted cubic spline for two-parameter singularly
perturbed boundary value problems. Int. J. Comput. Math., 89(6):836–850, 2012.
M. K. Kadalbajoo and A. S. Yadaw. B-spline collocation method for a two-parameter
singularly perturbed convection–diffusion boundary value problems. Applied Mathematics
and Computation, 201(1-2):504–513, 2008.
A. Kaushik. Singular perturbation analysis of bistable differential equation arising in the
nerve pulse propagation. Nonlinear Analysis: Real World Appl., 9(5):2106–2127, 2008.
B. Kellogg R and A. Tsan. Analysis of some difference approximations for a singular perturbation
problem without turning points. Math. computation, 32(144):1025–1039, 1978.
N. Kopteva. Uniform pointwise convergence of difference schemes for convection-diffusion
problems on layer-adapted meshes. Comput., 66(2):179–197, 2001.
N. Kopteva and M. Stynes. Stabilised approximation of interior-layer solutions of a singularly
perturbed semilinear reaction–diffusion problem. Numer. Math., 119(4):787–810, 2011.
S. Kumar, M. Kumar, et al. A robust numerical method for a two-parameter singularly
perturbed time delay parabolic problem. Comput., 39(3):1–25, 2020.
G. L, S. R. Sahu, and J. Mohapatra. Uniformly convergent numerical method for singularly
perturbed time delay parabolic problem with two small parameters. Iran. J. Sci. Technol.
Transactions A: Sci., 43(5):2373–2383, 2019.
B. Lin, K. Li, and Z. Cheng. B-spline solution of a singularly perturbed boundary value
problem arising in biology. Chaos, Solitons & Fractals, 42(5):2934–2948, 2009.
T. Linss. A posteriori error estimation for a singularly perturbed problem with two small
parameters. Int. J. Numer. Analysis & Model., 7(3), 2010.
T. Linß and H.-G. Roos. Analysis of a finite-difference scheme for a singularly perturbed
problem with two small parameters. Journal of Mathematical Analysis and Applications,
(2):355–366, 2004.
C. M, T. Prabha, and V. Shanthi. A parameter robust higher order numerical method
for singularly perturbed two parameter problems with non-smooth data. J. Comput. Appl.
Math., 309:11–27, 2017.
Miller, E. O’Riordan, G. Shishkin, and L. Shishkina. Fitted mesh methods for problems
with parabolic boundary layers. In Mathematical Proceedings of the Royal Irish Academy,
pages 173–190. Jstor, 1998.
J. Miller, E. O’riordan, and G. I. Shishkin. Fitted numerical methods for singular perturbation
problems: error estimates in the maximum norm for linear problems in one and two
dimensions. World scientific, 1996.
K. MK and A. S. Yadaw. Parameter-uniform finite element method for two-parameter
singularly perturbed parabolic reaction-diffusion problems. Int., 9(04):1250047, 2012.
M. A. Mohye, J. B. Munyakazi, and T. G. Dinka. A nonstandard fitted operator finite
difference method for two-parameter singularly perturbed time-delay parabolic problems.
Front. Appl. Math. Stat., 9:1222162, 2023.
M. A. Mohye, J. B. Munyakazi, and T. G. Dinka. A second order numerical method for twoparameter
singularly perturbed time-delay parabolic problems. J. Math. Model., 11(4):745–
, 2023.
J. B. Munyakazi. A robust finite difference method for two-parameter parabolic convectiondiffusion
problems. Appl. Math. & Inf. Sci., 9(6):2877, 2015.
J. B. Munyakazi and K. C. Patidar. A fitted numerical method for singularly perturbed
parabolic reaction-diffusion problems. Comput., 32(3):509–519, 2013.
L. OA, V. Solonnikov, and N. Ural’tseva. Linear and quasilinear equations of parabolic type.
(providence, RI: american mathematical society) go to reference in article. , 1968.
O’Malley. Two-parameter singular perturbation problems for second-order equations. J.
Math. Mech., 16(10):1143–1164, 1967.
O’Malley. Boundary value problems for linear systems of ordinary differential equations
involving many small parameters. J. Math. Mech., 18(9):835–855, 1969.
E. O’Riordan, M. L. Pickett, and G. I. Shishkin. Singularly perturbed problems modeling
reaction-convection-diffusion processes. Comput. Methods Appl. Math., 3(3):424–442, 2003.
K. C. Patidar. A robust fitted operator finite difference method for a two-parameter singular
perturbation problem1. J. Differ. Equations Appl., 14(12):1197–1214, 2008.
Rao, S. Kumar, and M. Kumar. A parameter-uniform b-spline collocation method for
singularly perturbed semilinear reaction-diffusion problems. Journal of optimization theory
and applications, 146(3):795–809, 2010.
C. S. Rao and M. Kumar. Exponential b-spline collocation method for self-adjoint singularly
perturbed boundary value problems. Applied Numerical Mathematics, 58(10):1572–1581,
Reddy and P. P. Chakravarthy. Method of reduction of order for solving singularly perturbed
two-point boundary value problems. Applied Mathematics and Computation, 136(1):27–45,
H.-G. Roos and Z. Uzelac. The SDFEM for a convection-diffusion problem with two small
parameters. Comput. Methods Appl. Math., 3(3):443–458, 2003.
S. V, N. Ramanujam, and S. Natesan. Fitted mesh method for singularly perturbed reactionconvection-
diffusion problems with boundary and interior layers. J. Appl. Math. Comput.,
(1):49–65, 2006.
Valanarasu and N. Ramanujam. Asymptotic initial value methods for two-parameter singularly
perturbed boundary value problems for second order ordinary differential equations.
Applied mathematics and computation, 137(2-3):549–570, 2003.
R. Vulanovi´c. A higher-order scheme for quasilinear boundary value problems with two small
parameters. Comput., 67(4):287–303, 2001.
S¸. Y¨uzba¸sı and N. S¸ahin. Numerical solutions of singularly perturbed one-dimensional
parabolic convection–diffusion problems by the bessel collocation method. Appl. Math. Comput.,
:305–315, 2013.