Existence and decay estimate of global solution for a viscoelastic wave equation with nonlinear boundary source term

Main Article Content

Mohamed Mellah
Abdelkader Benali

Abstract

In this paper, we consider a viscoelastic wave equation with nonlinear boundary source term. By the combination of Galerkin approximation and potential well methods, we prove the global existence of solutions. Then, we give an decay rate estimate of the energy by making use of the perturbed energy method.

Article Details

How to Cite
Mohamed Mellah, & Benali, A. (2024). Existence and decay estimate of global solution for a viscoelastic wave equation with nonlinear boundary source term. Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.56.2025.5256
Section
Papers

References

M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelastic. SIAM Stud. Appl. Math. Society

for Industrial and Applied Mathematics, Philadelphia (1992).

M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical Problems in Viscoelasticity. Pitman Monographs and

Surveys in Pure and Applied Mathematics, vol. 35. Wiley, New York (1987).

S. Zang, W. Zhuang, The strain solitary waves in a nonlinear elastic rod, Acta. Mech. Sinica, 3(1987),

-72.

C. Sayler, D. Fonstermacher, A symmetric regularized-long-wave equation, Phys. Fluids, 27(1984), 4-7.

I. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13(1977),

-155.

G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in

fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.

X.S. Han, M.X. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, J.

Franklin Inst. 347 (2010) 806-817.

R.Z. Xu, Y.B. Yang, Y.C. Liu, Global well-posedness for strongly damped viscoelastic wave equation,

Appl. Anal. 92 (2013) 138-157.

J. Yu, Y. Shang, H. Di, Global existence, nonexistence, and decay of solutions for a viscoelastic wave

equation with nonlinear boundary damping and source terms. J. Math. Phys. 61 (2020), 071503.

J. L. Yu, Y. D. Shang, and H. F. Di, Global nonexistence for a viscoelastic wave equation with acoustic

boundary conditions, Acta Math. Sci., Ser. B 40(1), 155-169 (2020).

A. Peyravi, General decay and blow up of solutions for a system of viscoelastic wave equations with

nonlinear boundary source terms, J. Math. Anal. Appl. 451, 1056-1076 (2017).

H.A. Levine, R.A. Smith, A potential well theory for the wave equation with a nonlinear boundary

condition, J. Reine Angew. Math. 374 (1987) 1-23.

H. F. Di and Y. D. Shang, Existence, nonexistence and decay estimate of global solutions for a viscoelastic

wave equation with nonlinear boundary damping and internal source terms, Eur. J. Pure Appl. Math. 10,

-701 (2017).

H.F. Di, Z. Song, globa existence and blow-up phenomenon for a quasi-linear viscoelastic equation with

strong daming and source terms, Opuscula Math. 42, no. 2 (2022), 119-155.

J. L. Lions, Quelques M´ethodes de R´esolution des Probl`emes aux Limites Non Lin´eaires. Dunod GauthierVillars, Paris (1969).

F. SUN, M. WANG, Global solutions for a nonlinear hyperbolic equation with boundary memory source

term, Journal of Inequalities and Applications, 3 1-16 (2006).

Faculty of Exact Sciences and Computer Science, Hassiba Benbouali University of Chlef,

Algeria