Existence and decay estimate of global solution for a viscoelastic wave equation with nonlinear boundary source term
Main Article Content
Abstract
In this paper, we consider a viscoelastic wave equation with nonlinear boundary source term. By the combination of Galerkin approximation and potential well methods, we prove the global existence of solutions. Then, we give an decay rate estimate of the energy by making use of the perturbed energy method.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelastic. SIAM Stud. Appl. Math. Society
for Industrial and Applied Mathematics, Philadelphia (1992).
M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical Problems in Viscoelasticity. Pitman Monographs and
Surveys in Pure and Applied Mathematics, vol. 35. Wiley, New York (1987).
S. Zang, W. Zhuang, The strain solitary waves in a nonlinear elastic rod, Acta. Mech. Sinica, 3(1987),
-72.
C. Sayler, D. Fonstermacher, A symmetric regularized-long-wave equation, Phys. Fluids, 27(1984), 4-7.
I. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13(1977),
-155.
G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in
fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
X.S. Han, M.X. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, J.
Franklin Inst. 347 (2010) 806-817.
R.Z. Xu, Y.B. Yang, Y.C. Liu, Global well-posedness for strongly damped viscoelastic wave equation,
Appl. Anal. 92 (2013) 138-157.
J. Yu, Y. Shang, H. Di, Global existence, nonexistence, and decay of solutions for a viscoelastic wave
equation with nonlinear boundary damping and source terms. J. Math. Phys. 61 (2020), 071503.
J. L. Yu, Y. D. Shang, and H. F. Di, Global nonexistence for a viscoelastic wave equation with acoustic
boundary conditions, Acta Math. Sci., Ser. B 40(1), 155-169 (2020).
A. Peyravi, General decay and blow up of solutions for a system of viscoelastic wave equations with
nonlinear boundary source terms, J. Math. Anal. Appl. 451, 1056-1076 (2017).
H.A. Levine, R.A. Smith, A potential well theory for the wave equation with a nonlinear boundary
condition, J. Reine Angew. Math. 374 (1987) 1-23.
H. F. Di and Y. D. Shang, Existence, nonexistence and decay estimate of global solutions for a viscoelastic
wave equation with nonlinear boundary damping and internal source terms, Eur. J. Pure Appl. Math. 10,
-701 (2017).
H.F. Di, Z. Song, globa existence and blow-up phenomenon for a quasi-linear viscoelastic equation with
strong daming and source terms, Opuscula Math. 42, no. 2 (2022), 119-155.
J. L. Lions, Quelques M´ethodes de R´esolution des Probl`emes aux Limites Non Lin´eaires. Dunod GauthierVillars, Paris (1969).
F. SUN, M. WANG, Global solutions for a nonlinear hyperbolic equation with boundary memory source
term, Journal of Inequalities and Applications, 3 1-16 (2006).
Faculty of Exact Sciences and Computer Science, Hassiba Benbouali University of Chlef,
Algeria