Dynamics for a viscoelastic wave equation with nonlocal nonlinear dissipation and logarithmic nonlinearity: blow-up solutions, lifespan estimates and asymptotic stability

Main Article Content

Amir Peyravi

Abstract

This paper investigates the instability of a class of wave equations with a non-local nonlinear damping term
\begin{equation*} v_{tt}-\Delta v+(g\ast \Delta v)(t)+\sigma(\|\nabla v\|_{2}^{2})\phi(v_{t})=|v|^{p-2}v\ln|v|^{k},
\end{equation*}
where $(x,t)\in\Omega\times(0,T)$, $\Omega\subset \mathbb{R}^{n}$, $\sigma$ represents the nonlocal coefficient and $\phi$ is the nonlinear damping term. By considering suitable assumptions on the functions $\sigma$ and $\phi$, the exponents $p$ and $k$, the relaxation function $g$ and the initial data, and by making use of differential
inequality technique, we establish the occurrence of finite time blow up of solutions at low and arbitrary high positive initial energy levels. Moreover, lower bounds for the lifespan of solutions are derived in both cases. Asymptotic stability for the solution energy is also investigated by employing the energy perturbation method. This work extends and complements
some previous results in the literature.

Article Details

How to Cite
Peyravi, A. (2024). Dynamics for a viscoelastic wave equation with nonlocal nonlinear dissipation and logarithmic nonlinearity: blow-up solutions, lifespan estimates and asymptotic stability. Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.56.2025.5263
Section
Papers

References

R. A. Adams, J.J.F. Fournier, Sobolev Spaces. Second edition, Pure and Applied Mathematics (Amsterdam), vol.140, Elsevier/Academic Press, Amsterdam, (2003).

M. M. Al-Gharabli, S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ. $mathbf{18}$(2018), 105–125.

K. Bartkowski, P., Górka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities,

J. Phys. A: Math. Theor, $mathbf{41}$(2008), 355201.

I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull.

Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys, $mathbf{23}$(4)(1975), 461-466.

I. Bialynicki-Birula, J., Mycielski, Nonlinear wave mechanics, Ann. Physics, $mathbf{100}$(1-2) (1976), 62-93.

M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma, Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains, Differential Integral Equations, $mathbf{17}$(2004), 495-510.

T. Cazenave, A. Haraux, Equations d`{e}volution avec non-linearite logarithmique, Ann. Fac.

Sci. Toulose Meth, $mathbf{2}$(1980), 21-51.

Y. Chen, R. Xu, Global well-posedness of solutions for fourth order dispersive wave

equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal, $mathbf{192}$(2020), 111664.

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural

nonlinear damping, J. Abstr. Differ. Equ. Appl, textbf{1}(2010), 86–106.

P. G'{o}rka, Logarithmic Klein–Gordon equation. Acta Phys. Pol. B, textbf{40}(1)(2009), 59-66.

D. Guo, Z. Zhang, General Decay for Semi-Linear Wave Equations with Memory Term and Logarithmic Source, Results in Mathematics, textbf{78}(4)(2023), https://doi.org/10.1007/s00025-023-01893-8.

M. M. A. Guesmia, S. A. Messaoudi, Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Commun. Pure. Appl. Math, textbf{18}(1)(2019), 159-180.

T. G. Ha, S-H. Park, Blow up phenomena for a viscoelastic wave equations with strong damping and logarithmic nonlinearity, Adv. Difference Equ, textbf{235}(2020), https://doi.org/10.1186/s13662-020-02694-x.

X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc, textbf{50}(1)(2013), 275-283.

T. Hiramatsu, M.Kawasaki, F. Takahashi, Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, textbf{6}(008)(2010).

D. Li, H. Zhang, S. Liu, Q. Hu, Blow-up of solutions to a viscoelastic wave equation with nonlocal damping, Evol. Equ. Control Theory, textbf{11}(6)(2022), Doi: 10.3934/eect.2022009.

W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal, textbf{9}(1)(2020), 613-632.

H. Di, Y. Shang, Z. Song, Initial boundary value problem for a class of strongly damped

semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real World Appl, textbf{51}(2020), 102968.

H. Lange , G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential and

Integral Equations, textbf{10}(1997), 1075-1092.

P. P. D. Lazo, Quasi-linear Wave Equation with Damping and Source Terms, Ph.D thesis, Federal University of Rio de Janeiro. Brazil. (1997)

M. Liao, The Lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity, Evol. Equ. Control Theory, (2021). doi: 10.3934/eect.2021025.

G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. res. arch, textbf{28}(1)(2020), 263-289.

G. Liu, H. Zhang, Blow up at infinity of solutions for integro-differential equation, Appl. Math. Comput, textbf{230}(2014), 303–314.

L. Ma, Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci, textbf{41}(7)(2018), 2639-2653.

S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl, textbf{320}(2006), 902-915.

V. Narciso, Attractors for a plate equation with nonlocal nonlinearities, Math. Methods Appl. Sci, textbf{40}(11), 3937-3954 (2017).

V. Narciso, On a Kirchhoff wave model with non-local nonlinear damping, Evol. Equ. Control Theory, textbf{9}(2020), 487-508.

V. Narciso, F. Ekinci, E. Pic{s}kin, On a beam model with degenerate nonlocal nonlinear damping, Evol. Equ. Control Theory. textbf{12}(2)(2023), 732-751.

D. C. Pereira, G. M. Araújo, C. A. Raposo, V. R. Cabanillas, Blow-up results for a viscoelastic beam equation of $p$-Laplacian type with strong damping and logarithmic source, Math. Meth. Appl. Sci, 2023, 1–24 (2023).

A. Peyravi, General Stability and Exponential Growth for a Class of Semi-linear Wave Equations with Logarithmic Source and Memory Terms, Appl. Math. Optim, textbf{81}(35)(2020), 545–561.

E. Pic{s}kin, S. Boulaaras, N. Irkil, Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity, Math. Methods. Appl. Sci, textbf{44}(6)(2021), 4654-4672.

M. A. Jorge Silva, V. Narciso, A. Vicente, On a beam model related to flight structures with nonlocal energy damping, Discrete Contin. Dyn. Syst. Ser. B. textbf{24}(2019), 3281-3298.

M. A. Jorge Silva, V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst, textbf{35}(2015), 985–1008.

V. S. Vladimirov, The equation of the p-adic open string for the scalar tachyon field, Izv. Math, textbf{69}(3)(2005), 487-512.

Yang, Y., Fang, Z. B.: On a Semilinear Wave Equation with Kirchhoff-Type Nonlocal Damping Termsand Logarithmic Nonlinearity. Mediterr. J. Math. 20(13), (2023), https://doi.org/10.1007/s00009-022-02221-0

H. Zhang, D. Li, W. Zhang, Q. Hu, Asymptotic stability and blow-up for the wave equation with degenerate nonlocal nonlinear damping and source terms, Appl. Anal, textbf{101}(9)(2022), 3170-3181.

G. Zu, B. Guo, Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy, Evol. Equ. Control Theory, textbf{10}(2)(2021), 259-270.