On the well-posedness and stability analysis of standing waves for a 1D-Benney-Roskes system

Main Article Content

Jose Raul Quintero Henao

Abstract

In this paper, we revisit the well-posedness for the Benney-Roskes system (also known as Zakharov-Rubenchik systems) for N = 1, 2, 3, and establish the nonlinear orbital stability of ground state standing waves in the case N = 1, by using the variational approach induced by the Hamiltonian structure and the Liapunov method.

Article Details

How to Cite
Quintero Henao, J. R. (2024). On the well-posedness and stability analysis of standing waves for a 1D-Benney-Roskes system. Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.56.2025.5268
Section
Papers

References

bibitem{Beney-Roskes-1969} D. Benney, G. Roskes,

Wave Instability,

Studies in Applied Math., textbf{48} (1969), 455-472.

bibitem{JBona-75} J. Bona, On the stability of solitary waves, Proc. R. SOC. London, (1975), 363-374.

bibitem{Cosnt-Saut-1986} P. Constantin, Local smoothing properties for dispersive equations, J. Amer. Math. Soc., textit{1} (1988), 413-446.

bibitem{Cordero-2016} J. Cordero, Supersonic limits for the Zakharov-Rubenchik system, Journal of Differential Equations, textbf{261} (2016), 5260-5288.

bibitem{JQ-JC-2020} J. Cordero and J. Quintero, Instability of the Standing Waves for a Benney-Roskes/Zakharov-Rubenchik System and Blow-up for the Zakharov Equations, Discrete and Continuos Dynamical Systems B, textbf{25(4)} (2020), 1213-1240.

bibitem{Ghidaglia-Saut} J. Ghidaglia and J. C. Saut,

On the Zakharov-Schulman equations, Nonlinear Dispersive Waves, L. Debnath Ed., World Scientific, (1992), 83-97.

bibitem{Kato-1983} T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Math. Supp. Studies in Applied Math., textit{8} (1983), 93-128.

bibitem{KPV-1998} C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence for the generalized nonlinear Schr"{o}dinger equations, Inventions Math., textit{134} (1993), 489-545.

bibitem{KPV-1993} C. Kenig, G. Ponce and L. Vega, Small solution to nonlinear Schr"{o}dinger equations. Comm. Pute Appl. Math., textit{46} (1993), 527-620.

bibitem{Zakharov-Kuznetsov-1984} E. Kuznetsov and V. Zakharov,

Hamiltonian formalism for systems of hydrodynamics type, Mathematical Physics Review, Soviet Scientific Reviews, textbf{4} (1984), 167-220.

bibitem{Lannes-2013} D. Lannes, Water waves: mathematical theory and asyptotics, Mathematical Surveys and Monographs, textbf{188} AMS, Providence, 2013.

bibitem{L-M2009} F. Linares, C. Matheus, Well-posedness for the 1D Zakharov–Rubenchik equation, Advances in Differential Equations, textbf{14} (2009), 261-288.

bibitem{Luong-Maseur-Saut-2015} H. Luong, N. Mauser and J-C. Saut, On the cauchy problem for the Zakharov-Rubenchik/Benney-Roskes system. Comm. Pure and Applied Analysis. textbf{17} (2015), 1571-1594.

bibitem{McLeod-Serrin-1981} K. McLeod and J. Serrin, Uniqueness of solutions of

semilinear Poisson equations. Proc. Natl. Acad. Sci. USA textbf{78} (1981), 6592-6595.

bibitem{obrecht-2015} C. Obrecht, Th`ese de Doctorat, Universit'e Paris-Sud (2015).

bibitem{F-L2003} F. Oliveira, Stability of the solitons for the one-dimensional

Zakharov–Rubenchik equation, Physica D, textbf{75} (2003), 220-240.

bibitem{Passot-Sulem-Sulem-1996} T. Passot, C. Sulem and P. Sulem,

Generalization of acoustic fronts by focusing wave packets, Physic D, textbf{94} (1996), 168-187.

bibitem{saut-ponce-2005} G. Ponce and J. C. Saut, Wellposedness for the Benney-Roskes/Zakharov-Rubenchik system, Discrete and Continuous Dynamical Systems, textbf{13(3)} (2005), 811-825.

bibitem{Rubenchik-Zakharov-1972} A. Rubenchik, V. Zakharov, Nonlinear Interaction of High-Frequency and Low-Frequency Waves, Prikl. Mat. Techn. Phys., textbf{5} (1972), 84-98.

bibitem{Schochet-Weinstein-1986} H. Schochet and M.I.Weinstein, The nonlinear Schr"{o}dinger limit of the Zakharov governing Langmuir turbulence, Comm. Math. Phys., textbf{106} (1986), 569-580.

bibitem{P-Solin-1987} P. Sj"{o}lin, Regularity of solutions for the Schr"{o}dinger equations, Duke Math J., textit{55} (1987), 699-715.

bibitem{L-Vega-1988} L. Vega,

the Schr"{o}dinger equation: pointwise convergence to the initial data, Proc. Amer. Math. Soc.,

textit{102} (1988), 874-878.

bibitem{Weinstein-1986} M. Weinstein, Lyapunov Stability of Ground States of Nonlinear Dispersive Evolution Equations, Comm. pure and applied Math., textbf{39} (1986), 51-68.