Homogenization of partial differential equations with Preisach operators
Main Article Content
Abstract
The current work deals with initial boundary value parabolic problems with Preisach hysteresis whose the density functions are allowed to depend on the variable of space. The model contains nonlinear monotone operators in the diffusion term, arising from an energy. Thanks to the properties of Preisach hysteresis operators and to the sigma-convergence method, we obtain the convergence of the
microscopic solutions to the solution of the homogenized problem. The effective operator is obtained in terms of a solution of a nonlinear corrector equation addressed in the usual sense of distributions, leading in an approximate scheme for the homogenized
coefficient which is an important step towards the numerical implementation of the results from the homogenization theory beyond the periodic setting.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
L. Boccardo, T. Gallou¨et and F. Murat, Unicit´e de la solution de certaines ´equations elliptiques
non lin´eaires, C.R. Acad. Sci. Paris 315 (1992) 1159–1164.
H. Br´ezis, Op´erateurs Maximaux Monotones et Semi-groups de Contractions dans les Espaces
de Hilbert, North-Holland, Amsterdam, 1973.
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Appl. Math. Sci., Vol. 121,
Springer, New York, 1996.
G. Cardone and J.L. Woukeng, Corrector problem in the deterministic homogenization of
nonlinear elliptic equations. Appl. Anal. 98 (2019) 118–135.
G. Cardone, A. Fouetio, S. Talla Lando and J. L. Woukeng. ”Global dynamics of stochastic
tidal equations.” Nonlinear Analysis 225 (2022): 113137.
J. Casado Diaz and I. Gayte, The two-scale convergence method applied to generalized
Besicovitch spaces. Proc. R. Soc. Lond. A 458 (2002) 2925–2946.
J. Franc˚u, Homogenization of heat equation with hysteresis. Modelling 2001 (Pilsen). Math.
Comput. Simulation 61 (2003) 591–597.
J. Franc˚u, Homogenization of diffusion equation with scalar hysteresis operator. Proceedings
of Partial Differential Equations and Applications (Olomouc, 1999). Math. Bohem. 126
(2001) 363–377.
J. Franc˚u and P. Krejˇc´ı, Homogenization of scalar wave equations with hysteresis. Contin.
Mech. Thermodyn. 11 (1999) 371–390.
M. Hilpert, On uniqueness for evolution problems with hysteresis. In Mathematical Models
for Phase Change Problems (J.F. Rodrigues, ed.). Birkh¨auser, Basel (1989) 377–388.
W. J¨ager, A. Tambue and J.L. Woukeng, Approximation of homogenized coefficients in deterministic
homogenization and convergence rates in the asymptotic almost periodic setting,
arxiv preprint, arXiv: 1906.11501.
J. Kopfov´a, A convergence result for spatially inhomogeneous Preisach operators. Z. Angew.
Math. Phys. 58 (2007) 350–356.
J. Kopfov´a, A homogenization result for a parabolic equation with Preisach hysteresis.
ZAMM Z. Angew. Math. Mech. 87 (2007) 352–359.
P. Krejˇc´ı (1996), Hysteresis, convexity and dissipation in hyperbolic equations, Tokyo:
Gakkotosho.
J. Leray and J.L. Lions, Quelques r´esultats de Visik sur les probl`emes elliptiques non lin´eaires
par les m´ethodes de Minty-Browder, Bull. Soc. Math. France 93 (1965) 97–107.
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization.
SIAM Journal on Mathematical Analysis, 20(3):608-623, 1989.
G. Nguetseng, Homogenization structures and applications I, Z. Anal. Anwen. 22 (2003)
–107.
G. Nguetseng, M. Sango and J.L. Woukeng, Reiterated ergodic algebras and applications,
Commun. Math. Phys. 300 (2010) 835–876.
G. Nguetseng and J.L.Woukeng, Deterministic homogenization of parabolic monotone operators
with time dependent coefficients, Electron. J. Differ. Eq. 2004 (2004) 1–23.
G. Nguetseng and J.L. Woukeng, Σ-convergence of nonlinear parabolic operators. Nonlin.
Anal. TMA. 66 (2007), 968–1004.
A. L. Pokam Kakeu and J.L. Woukeng, Well-Posedness and Long-Time Behaviour for a
Nonlinear Parabolic Equation With Hysteresis, Commun. Math. Anal. 23 (2020) 38–62.
A. L. Pokam Kakeu, Homogenization of Vlasov-Poisson equations with strong external magnetic
field, revised in Partial Differential Equations and Applications PDEA.
A. L. Pokam Kakeu and J. L.Woukeng, (2020), ’Homogenization of nonlinear parabolic equations
with hysteresis’, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift
f¨ur Angewandte Mathematik und Mechanik p. e201900323.
M. Sango, N. Svanstedt and J.L. Woukeng, Generalized Besicovitch spaces and application
to deterministic homogenization, Nonlin. Anal. TMA 74 (2011) 351–379.
A. Visintin, Differential Models of Hysteresis, Springer, Berlin, 1994.
N. Wiener, ’Tauberian theorems’, Annals of mathematics (1932), pp. 1–100.
J.L. Woukeng, Deterministic homogenization of non-linear non-monotone degenerate elliptic
operators, Adv. Math. 219 (2008) 1608–1631.
J.L. Woukeng, Homogenization in algebra with mean value, Banach J. Math. Anal. 9 (2015)
–182.
J.L.Woukeng, Introverted algebras with mean value and applications, Nonlinear Anal. TMA
(2014) 190–215.
J.L. Woukeng, Corrector problem and homogenization of nonlinear elliptic monotone PDE.
In Shape optimization, homogenization and optimal control, 57–73, Internat. Ser. Numer.
Math., 169, Birkh¨auser/Springer, Cham, 2018.