Unique continuation property for the Rosenau equation

Main Article Content

Ricardo Córdoba Gómez
Anyi Daniela Corredor

Abstract

In this work, using an appropriate Carleman-type estimate, we establish a unique continuation result for the Rosenau equation that models the dynamics of dense discrete systems with high order effects.

Article Details

How to Cite
Córdoba Gómez, R., & Corredor, A. D. (2024). Unique continuation property for the Rosenau equation. Tamkang Journal of Mathematics, 55(4), 391–403. https://doi.org/10.5556/j.tkjm.55.2024.5276
Section
Papers

References

bibitem{BourgainC}

newblock J. Bourgain,

newblock On the compactness of the support of solutions of dispersive equations,

newblock Internat. Math. Res. Notices, textbf{5(9)} (1997), 437–447.

bibitem{BIM}

newblock E. Bustamante and P. Isaza and J. Mej'ia,

newblock On the support of solutions to the Zakharov-Kuznetsov,

newblock J. Diff. Eq., textbf{251} (2011), 2728–2736.

bibitem{BIM2}

newblock E. Bustamante and P. Isaza and J. Mej'ia,

newblock On uniqueness properties of solutions of the Zakharov-Kuznetsov,

newblock J. Funct. Anal., textbf{264} (2013), 2529–2549.

bibitem{Mah1}

newblock X. Carvajal and M. Panthee,

newblock Unique continuation property for a higher order nonlinear

Schr"odinger equation,

newblock J. Math. Anal. Appl., textbf{303} (2005), 188–207.

bibitem{Mah2}

newblock X. Carvajal and M. Panthee,

newblock On uniqueness of solution for a nonlinear Schr"odinger-Airy equation,

newblock Nonlinear Analysis: Theory, Methods and Applications, textbf{64(1)} (2006), 146–158.

bibitem{Escauriaza}

newblock L. Escauriaza and C. Kenig and G. Ponce and L. Vega,

newblock On uniqueness properties of solutions of the $k$-generalized KdV equations,

newblock J. Funct. Anal., textbf{244(2)} (2007), 504–535.

bibitem{Iorio1}

newblock R. J. I'orio Jr.,

newblock Unique continuation principles for the Benjamin-Ono equation,

newblock Differential Integral Equations, textbf{16(11)} (2003), 1281–1291.

bibitem{Iorio2}

newblock R. J. I'orio Jr.,

newblock Unique Continuation Principles for Some Equations of Benjamin-Ono Type,

newblock Nonlinear Equations: Methods, Models and Applications, textbf{54} (2003), 163–179.

bibitem{Isa}

newblock V. Isakov,

newblock Inverse problems for partial differential equations,

newblock Appal. Math. Sci., 1997.

bibitem{KPV1}

newblock C. Kenig and G. Ponce and L. Vega,

newblock On unique continuation for nonlinear Schr"odinger equation,

newblock Comm. Pure Appl. Math., textbf{56} (2003), 1247–1262.

bibitem{KePoVe}

newblock C. Kenig and G. Ponce and L. Vega,

newblock On the support of solutions to the generalized KdV equation,

newblock Ann. Inst. H. Poincar'e Anal.Non. Lin'earire, textbf{19(2)} (2002), 191–208.

bibitem{Lions}

newblock J. Lions,

newblock Exact controllability, stabilization and perturbations for distributed systems,

newblock SIAM Reviews, textbf{30(1)} (1988), 1–68.

bibitem{Panthee1}

newblock M. Panthee,

newblock Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation,

newblock Electronic Journal of Differential Equations, textbf{59} (2005), 1–12.

bibitem{Rosenau}

newblock P. Rosenau,

newblock Dynamics of dense discrete systems,

newblock Prog. Theoret. Phys., textbf{79} (1988), 1028–1042.

bibitem{Scheurer}

newblock J. Saut and B. Scheurer,

newblock Unique continuation for some evolution equations,

newblock J. Diff. Equations, textbf{66} (1987), 118–139.

bibitem{YShang}

newblock Y. Shang,

newblock Unique continuation for the symmetric regularized long wave equation,

newblock Mathematical Methods in Applied Sciences, textbf{30} (2007), 375–388.

bibitem{FTre}

newblock F. Treves,

newblock Linear Partial Differential Equations with Constant Coefficients,

newblock Gordon and Breach, N. York, London, Paris, 1966.

bibitem{Cauchy2}

newblock S. Wang and G. Xu,

newblock The Cauchy problem for the Rosenau equation,

newblock Nonlinear Analysis: Theory, Methods and Applications, textbf{71(1)} (2009), 456–466.

bibitem{Zhang-UC}

newblock B. Zhang,

newblock Unique continuation for the Korteweg-de Vries equation,

newblock SIAM J. Anal., textbf{23} (1992), 55–71.